Exam Code: 0440 Sub. Code: 3012

1056

M.Sc. (Bio-Informatics) Second Semester MBIN-8007: Statistics and Probability

Time allowed: 3 Hours

Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting atleast *one* question from each Unit. Use of simple calculator is allowed. Statistical tables will be provided on demand.

x-*x*-*x*

- I. Briefly explain the following terms:
 - i) Nominal and Ratio scale with examples
 - ii) Less than & more than cumulative frequencies
 - iii) Steps to construct Ogive curves
 - iv) Conditional probability with examples
 - v) Probability density function of Uniform distribution
 - vi) Level of significance

vii) Critical points of Chi-square distribution

viii) Type - II error

UNIT - I

II. a) Differentiate between discrete and continuous variables, with examples.

b) Define the following:-

- i) Coefficient of dispersion and its measures
- ii) Measures of Central tendency and their properties
- iii) Kurtosis, and how it can be measured
- iv) Pie diagram
- III. a) Define Skewnwss and discuss its various measures.

b) Find the mode of the following data:

Age (in Years)	30-39	40-49	50-59	60-69	70-79		
No. of Patients:	29	73	113	85	15	1.1.1	(6,6)

P.T.O.

 $(8x1\frac{1}{2})$

(4,8)

(6,6)

(2)

<u>UNIT – II</u>

IV. a) State and prove Bayes' theorem,

b) Explain the following terms with examples:

- i) Sample space
- ii) Independent events
- iii) Probability mass function (pmf)
- iv) Cumulative distribution function (cdf) and its properties

V. a) What do you understand by the term 'Regression'? Define the regression equation of Y on X and its usefulness.

b) Define Karl Pearson's coefficient of Correlation and state its important properties. Also show that its value lies between -1 to +1. (6,6)

UNIT - III

VI. a) Define Normal distribution and state its important properties.

- b) Define Poisson distribution with parameters λ . Find the expressions for its mean and variance. Under what conditions it can be approximated by a normal distribution. (6,6)
- VII. a) Develop a test procedure for testing $H_0: \mu_1 = \mu_2$ against $H_1: \mu_1 \neq \mu_2$ when the two normal populations are independent and their variances are unknown.
 - b) Define ANOVA and state its assumptions, A test was given to five athletes at random from three different centers. The scores of the athletes out of 20 are given below:

19	17	16	15	18
17	14	15	14	15
16	13	10	17	16
	17	17 14	17 14 15	19 17 16 15 17 14 15 14 16 13 10 17

Carry out the analysis of variance and state your conclusions, (Tabulated F2,12=19.40 for $\alpha = 0.05$)

(6,6)