(i)	Prin	ted Pages: 3 Roll No	<u>/Bl</u>
(ii)	Que	stions :9 Sub. Code: 2 9	9 4
		Exam. Code: 4 3	7
	- 3×5	M.Sc. 3 rd Semester	
		1125	
		BIOTECHNOLOGY	
P	aper-	-MBIO-305: Advances in Genomics and Prote	omics
Time Allowed: Three Hours] [Maximum M			arks: 80
Note	on	tempt five questions in all. Question No. 1 is compulse question each from Unit I to Unit IV.	ory. Select
1.	Writ	e short answers on:	
	(a)	Oligonucleotide Fingerprinting	
	(b)	e-PCR	
	(c)	E-Value	
	(d)	Levenshtein distance	
	(e)	Log Odd Ratio	
	(f)	Electrospray Ionization (ESI)	
	(g)	Rooted vs. Un-Rooted Trees	
	(h)	ChIP-seq.	8×2=16
UNIT-I			
2.	(a)	Discuss methods of eukaryotic gene prediction.	
	(b)	How bioinformatics is useful for discovering informatics	
		to protein structure, function and evolution?	2×8=16

- 3. (a) How Phase Display technique is used to identify and extract polypeptides with desired properties from a large collection of variants?
 - (b) Explain role of proteomics technologies in crop improvement. $2\times8=16$

UNIT-II

- 4. (a) What are Expression Libraries? Explain the process of generation of cDNA expression libraries.
 - (b) What are DNA Chips? How is it different from protein chips? Give applications of DNA chips. $2\times8=16$
- 5. (a) Write about protein array technology. How the detection of protein-protein interactions is done on Protein microarrays?
 - (b) Give applications of protein chips in proteomics. $2\times8=16$

UNIT-III

- 6. (a) Explain Illumina sequence-by-synthesis approach of DNA sequencing.
 - (b) Define BLAST. Describe its various forms used to analyze DNA and Protein sequences.
 - (c) Differentiate between local and global alignment. 8+4+4=16
- 7. (a) Explain DNA sequencing with Nanopores and its advantages over other next generation sequencing techniques.
 - (b) Why there is a need for 3D structure prediction of macromolecules? Explain Homology Modeling method of protein structure prediction. 2×8=16

UNIT-IV

- 8. (a) Explain the Mass spectrometry based protein identification method.
 - (b) How DNA microarray can be used to identify disease gene expression profile? $2\times8=16$
- 9. (a) Explain in detail ChIP method for Genome-wide identification of transcription factor binding sites.
 - (b) Proteomics studies involve high-resolving Gel based or Liquid-Phase separation techniques. Explain Liquid-Phase proteomics technique for protein separation. 2×8=16