B.A./B.Sc. (General) 1st Semester (2122)

MATHEMATICS

Paper-II (Calculus-I)

Time Allowed: Three Hours [Maximum Marks: 30

Note:—Attempt five questions in all, selecting at least two questions from each Unit.

UNIT-I

- 1. (a) Prove that between any two distinct real numbers, there lie an infinite number of real numbers.
 - (b) If |x-3| < 2, then prove that:

$$-\frac{9}{8} < \frac{x^2 - 2}{x + 3} < \frac{15}{4}$$

2. (a) Solve the inequality
$$\frac{x-2}{x+2} < \frac{x+1}{x-1}$$
.

(b) Prove that
$$Lt \frac{1}{x \to a} = \frac{1}{x - a} = \frac{1}{x - a}$$
 does not exist.

- (a) Let f be a continuous function defined in [a, b], f(a) ≠ f(b) and let k be any number lying between f(a) and f(b). Then prove that there exists c ∈ (a, b) such that f(c) = k.
 - (b) Show that the function f defined by:

$$f(x) = \begin{cases} [x-2] + [2-x] & ; x \neq 2 \\ 0 & ; x = 2 \end{cases}$$

is discontinuous at x = 2.

3

4. (a) Evaluate
$$Lt_{x\to 0} \left[\frac{2(\cosh x - 1)}{x^2} \right]^{\frac{1}{x^2}}$$
.

(b) Show that Lt $\frac{x^2 \sin \frac{1}{x}}{\tan x}$ exists, but cannot be evaluated

by L'Hospital rule. What is the limit?

3

UNIT-II

- 5. (a) State and prove Cauchy's Mean Value theorem. 3
 - (b) Use Mean Value theorem to prove that:

$$\frac{x}{1+x} < \log(1+x) < x \text{ for } x > -1, x \neq 0.$$
 3

6. (a) Expand cos x in powers of $x - \frac{\pi}{2}$ by using Taylor's theorem.

(b) Show that
$$\frac{d}{dx} [\tanh(\log x)] = \frac{4x}{(x^2 + 1)^2}$$
.

- 7. (a) Using Maclaurin's theorem, expand the function $f(x) = e^{\sin x}$.
 - (b) Prove that $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$, |x| < 1, and then find its derivative.
- 8. (a) If $x^3 + y^3 3axy = 0$, then show that :

$$y_2 = -\frac{2a^3xy}{(y^2 - ax)^3}$$

(b) If $y = \frac{\log x}{x}$, then prove that:

$$y_{n} = \frac{(-1)^{n} \lfloor n \rfloor}{x^{n+1}} \left[\log x - 1 - \frac{1}{2} - \frac{1}{3} - \dots - \frac{1}{n} \right]$$
 3