(i) Printed Pages: 4 Roll No.

(ii) Questions :7 Sub. Code : 0 0 4 6 Exam. Code : 0 0 0 1

B.A./B.Sc. (General) 1st Semester (2122)

PHYSICS

Paper-A: Mechanics-I

Time Allowed: Three Hours] [Maximum Marks: 44

Note:—(1) Attempt FIVE questions in all, selecting TWO each from Unit-I and Unit-II.

- (2) Unit-III is compulsory.
- (3) Use of Non-programmable Scientific Calculator is allowed.

UNIT-I

- (a) Define Centre of mass and show that the velocity of Centre of mass remains constant in the absence of external forces.
 - (b) The motion of a particle is expressed by the equations, x = (5t 9), $y = 2 \cos (3t)$, $z = 2 \sin (3t)$. Calculate velocity and acceleration of particle.

- (a) What are spherical polar coordinates? Derive an expression for the Volume element of a sphere in this system.
 - (b) Define Solid angle and its S.I. units. Find Solid angle subtended by a sphere at its centre.

 4
- 3. (a) Discuss the relationship of conservation laws of linear and angular momenta with symmetry properties of space and time.
 - (b) Find the Centre of mass of a system of particles of masses 0.5 kg, 1 kg and 2 kg placed at the corners of an equilateral triangle of 1 metre side.

UNIT-II

- (a) State Kepler's laws of planetary motion and use them
 to justify that the force between the sun and the planet
 obey inverse square law.
 - (b) Find the force field associated with the potential energy $V = Ae^{\alpha(x+y+z)}$, where A and α are constants.
- 5. (a) Explain the term reduced mass. How does it help to reduce the two-body problem into one body problem?Give example.
 - (b) Mention the various forces existing in nature and arrange them in increasing order of their strength.

- 6. (a) Derive relation between angles of scattering in lab. & C.M. system in two body elastic collisions.
 - (b) A neutron having mass of 1.67 × 10⁻²⁷ kg and moving at 10⁷ ms⁻¹ collides with a deuteron at rest and sticks to it. Given that the mass of deuteron is 3.34 × 10⁻²⁷ kg. Calculate the velocity of the combination.

UNIT-III

- 7. Attempt any EIGHT parts. Each part carries 1 mark:
 - (a) How does air friction affect the speed of a satellite?
 - (b) Is area a scalar or vector? What do you know about Volume?
 - (c) What will happen to the angular momentum of a particle, when net torque acting on the particle is zero?
 - (d) Mention the conditions under which property of flatness of free space holds good.
 - (e) What is space-time invariance principle?
 - (f) How is conservative force related to the potential energy of the system?
 - (g) Why are the gravitational and columbic forces called the inverse square forces?

- (h) Distinguish between elastic and inelastic scattering.
- (i) What are the assumptions involved in the derivation of Rutherford scattering formula?
- (j) Define impact parameter.

8×1=8