B.A./B.Sc. (General) 1st Semester

(2122)

PHYSICS

Paper-C: Electricity & Magnetism-I

Time Allowed: Three Hours [Maximum Marks: 44

Note: — Attempt FIVE questions in all, selecting TWO questions each from Units I and II. Unit-III is compulsory. Use of non-programmable calculator is allowed.

UNIT-I

- 1. (a) State and prove Stoke's theorem.
 - (b) Two point charges 'q' and 'Q-q' are placed on the x-axis separated by distance 'd'. Find the relation between Q and q so that the force of repulsion between them is maximum.
- 2. Using Gauss law, find the electric field due to a uniformly charged solid sphere at a point that lies:
 - (i) inside the sphere
 - (ii) outside the sphere

Show the variation graphically.

9

6

- 3. (a) Derive an expression for the electric field, due to the electric dipole located at the origin, at a point on its equatorial line.
 - (b) Given a vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Show that $\iint_S \vec{r} \cdot d\vec{s} = 3V$ where V is the volume enclosed by surface.

UNIT-II

- 4. (a) Show that electric field can be expressed as negative gradient of potential.
 - (b) The electric field in xy-plane is given by $\vec{E} = y\hat{i} + x\hat{j}$ N/c. Find the potential difference between two points A and B having coordinates (0,0) and (2,2), respectively.
- 5. (a) What is the concept of electric images? Calculate electric potential and electric field due to a point charge placed near an infinitely conducting sheet.
 - (b) Define polar and non-polar molecules. 3
- 6. (a) Derive differential form of Gauss's law for dielectric.
 - (b) Show that surface charge density of charges developed on surface of polarized dielectric is given by $\sigma_p = \vec{P} \cdot \hat{n}$ where \hat{n} is unit normal to the surface.

UNIT—III

- 7. Attempt any eight parts :-
 - (i) What are limitations of Coulomb's law?
 - (ii) What do you mean by polarization of dielectric?
 - (iii) Show that curl of conservative field is zero.
 - (iv) Show that the potential V = xyz satisfies Laplace's equation.
 - (v) Define electric line of force.
 - (vi) Differentiate between free and bound charges.
 - (vii) What is a solenoidal field? Give an example.
 - (viii) What is physical significance of electric susceptibility?
 - (ix) State Green's theorem in a plane.
 - (x) If the electric field is zero at a point P, is it necessary that electric potential should also be zero there? Explain.

 $1 \times 8 = 8$