(i) Printed Pages: 3			Roll No				
(ii)	Qı	uestions : 8		Code:	-		
		and the second second	(General) (2122) ATHEMAT per-III (St	rics	ter		
Tin	ne Al	llowed : Three H	Iours]	[Maxin	num Ma	rks :	30
Not	te :-	-Attempt five questions from o		all, select	ing at le	east t	wo
l.	(a)	Find the magnitu			t of t	wo 3	
	(b)	If P and Q are two of action divides 1: 2. Prove that	s the angle	between t			
2.	(a)	The resultant of If Q be doubled is again doubled	, R is doub	oled and if	Q is rev	ersed $\sqrt{3}:\sqrt{2}$	$\frac{1}{2}$.
	(b)	State and prove	λ-μ theore	m.			3

3. (a) The resultant of two like parallel forces P, Q passes through the point C. When P is increased by R and Q by S, the resultant still passes through C, and also when Q, R replaces P, Q respectively show that

$$S = R - \frac{(Q - R)^2}{P - Q}.$$

- (b) If a number of forces acting at a point be represented in magnitude and direction by the sides, taken in order of a Closed Polygon. Prove that they are in equilibrium.
- 4. A weight W is supported on a smooth plane of inclination α to the horizontal by a force whose line of action makes an angle 2α with the horizontal. If the pressure on the plane be arithmetic mean of the weight and the force. Show that

$$\alpha = \frac{1}{2} \sin^{-1} \left(\frac{3}{4} \right).$$

UNIT-II

- 5. (a) Explain the moment of a force about a point and give its Geometrical representation.
 - (b) Forces P, Q, R act along the sides BC, CA, AB respectively of triangle ABC. If the resultant passes through the centroid. Show that $\frac{P}{a} + \frac{Q}{b} + \frac{R}{c} = 0$.

- 6. (a) Prove that a single force and a Coplanar Couple acting on a rigid body cannot balance and are equivalent to a single force equal and parallel to the given force. 3
 - (b) A uniform rod AB of weight W, movable about a hinge at A, rests with the other end against a smooth vertical wall. If α be the inclination of the rod to the vertical, prove that the magnitude of the reaction at hinge A is

$$\frac{1}{2} W \sqrt{4 + \tan^2 \alpha}.$$

7. (a) P, Q are two like parallel forces. If two equal and opposite forces S along any two parallel lines at a distance b apart in the plane of P, Q are combined with them. Show that the resultant is displaced through a

distance
$$\frac{bS}{P+Q}$$
.

- (b) Explain Angle of friction and Co-efficient of friction.
- (a) How high can a particle rest inside a rough hollow sphere of radius a if the coefficient of friction is μ?
 - (b) A uniform ladder rests with one end against a smooth vertical wall and the other on the rough ground, the coefficient of friction is 3/4. If the inclination of the ladder to the ground is 45°. Show that a man whose weight is equal to that of the ladder can just ascend to the top of the ladder without slipping.