(i) Printed Pag	es: 4	Roll No				
(ii) Questions	:9	Sub. Code:	0	9	3	1
				0	2	0

Exam. Code:

Bachelor of Computer Applications 3rd Semester (2122)

COMPUTER ORIENTED NUMERICAL METHODS Paper: BCA-16-304

Time Allowed: Three Hours] [Maximum Marks: 65

Note: — Attempt FIVE questions in all, including Q.No. 9 in Section-E, which is compulsory and taking ONE each from Sections-A, B, C & D.

SECTION-A

- What is normalized floating point number? Explain various arithmetic operations with Normalized Floating Point Numbers, by taking examples.
- 2. (a) How a floating point number is stored in the memory of a computer? Explain by taking suitable example.
 - (b) Differentiate between 1's complement representation and 2's complement representation of numbers by taking examples.

 7,6

SECTION-B

- 3. (a) Solve $x^3 5x + 3 = 0$ by Regula-Falsi Method.
 - (b) Use the bisection method to approximate the value of $\sqrt{3}$ given that it lies in the interval [1, 2]. 7,6
- 4. (a) Solve the following system of linear simultaneous equations by Gauss-Elimination method:

$$2x + 2y + z = 12$$

 $3x + 2y + 2z = 8$
 $5x + 10y - 8z = 10$

(b) Solve the following system of linear simultaneous equations by Gauss-Jordan method:

$$2x + y + 6z = 9$$

 $8x + 3y + 2z = 13$
 $x + 5y + z = 7$

7,6

SECTION-C

5. (a) Use Lagrange and the divided difference formula to calculate F(3) from the following table:

. X:	0	1,	2	4	5	6
F(x):	1	14	15	5	6	19

(b) Given:

Find f(7.5) using Newton's Backward difference formula. 6,7

- 6. (a) Evaluate the value of the integral $\int_{0}^{1} \frac{x \, dx}{1+x^2}$ using Simpson's rule with three and six points.
 - (b) Find the minimum number of intervals required to evaluate the following integral with an accuracy

of
$$10^{-5}$$
 using Simpson's $1/3$ Rule.
$$\int_{0}^{1} \frac{1}{1+x} dx$$
 6,7

SECTION-D

7. Use the Runge-Kutta 4th order method with step size 0.5 to solve the initial value problem:

$$y' = \frac{3x}{y} - xy$$
, $y(0) = 2$ over the interval [0, 1].

8. What do you mean by approximation of a function by a Taylor's series? Find the Taylor polynomial of degree 2,

$$T_2(x)$$
 for $f(x) = \frac{1}{(2+x)}$ centered at $x_0 = 0$.

SECTION—E (Compulsory Question)

- 9. (a) Give definition of numerical analysis.
 - (b) Find the relative error, absolute error and percentage error, if $\frac{2}{3}$ is approximated to 0.6667.

- (c) What is the order of convergence of Secant Method?
- (d) What is meant by numerical integration?
- (e) What is the relation between Divided Differences and Forward Differences in interpolation?
- (f) What is pivoting in the solution of simultaneous linear equations? Explain with an example. 5×2, 3

Landenski traditucija 2002. IET Char

en an Marchine, and calls allow a valety of