(i) Printed Pages: 4 Roll No.

(ii) Questions :8 Sub. Code : 0 3 4 3

Exam. Code : 0 0 0 4

B.A./B.Sc. (General) 4th Semester (2053)

MATHEMATICS

Paper: III Dynamics

Time Allowed: Three Hours] [Maximum Marks: 30

Note:—Attempt FIVE questions, selecting at least TWO questions from each unit. Each question will carry 6 marks.

UNIT—I

- 1. (a) If a particle moving with uniform acceleration in a straight line describes equal distances in time t_1 , t_2 , t_3 .

 Show that $\frac{1}{t_1} \frac{1}{t_2} + \frac{1}{t_3} = \frac{3}{t_1 + t_2 + t_3}$.
 - (b) Two masses m₁ and m₂ (m₁ > m₂) are suspended by light inextensible string over a smooth pulley. Find the acceleration of masses, tension in the string and pressure on the pulley.

- 2. (a) A block of mass 3 kg is moving along a smooth horizontal surface with a velocity u at instant t = 0. A force of $\frac{160}{49}$ kg. w.t. is applied against the direction of motion. The force slows down the block to half of its original velocity while it moves 9 meters:
 - (i) What is u?
 - (ii) How long does it take for this to occur?
 - (b) A body falls freely from the top of a tower and during the last second of its flight it falls $\frac{16}{25}$ th of the whole distance. Find the height of the tower.
- 3. (a) A particle having mass m is acted upon by a force $m\mu\left(x+\frac{a^4}{x^3}\right) \text{ towards the origin. If it starts from rest at}$ a distance a from origin, show that it will reach the origin after time $\frac{\pi}{4\sqrt{\mu}}$.
 - (b) A body is projected up a smooth inclined plane of length 100 meters and inclination $\sin^{-1}\left(\frac{3}{5}\right)$. Find the velocity of projection which is just sufficient to carry the body to the top.

- 4. (a) A particle moves with SHM in a straight line. In first second starting from rest, it travels a distance a and in the next second, it travels a distance b in the same direction. Prove that amplitude of the motion is ^{2a²}/_{3a-b}.
 - (b) If t_1 and t_2 be the periods corresponding to two different weights attached to a vertical elastic string and C_1 and C_2 be the statistical extensions due to these weights, prove that, $g(t_1^2 t_2^2) = 4\pi^2(C_1 C_2)$.

UNIT-II

- 5. (a) A particle moves along the curve x = 4t, $y = 6t t^2$. Find tangential and normal acceleration when t = 3.
 - (b) A particle is projected with velocity 49 msec⁻¹ in a direction making an angle 45° with horizontal. Find:
 - (i) The time of flight
 - (ii) The horizontal range
 - (iii) The greatest height of projectile.
- 6. (a) The roadway of a bridge over a canal is in the form of a circular arc of radius 20 m. Find the greatest speed with which a motor-cyclist can cross the bridge without leaving the road at the heighest point.
 - (b) To a cyclist moving northeast at 16 km/hr, a west wind appears to blow from north. Find actual velocity of the wind.

- 7. (a) A stone of 3 kg falls vertically through a distance 40 m and comes to rest after penetrating 1 m into sand. What is the resistance offered by the sand?
 - (b) An insect crawls at a constant speed u along the spoke of wheel of radius r which is rotating with constant angular velocity w about its center. Find actual acceleration of the insect as it reaches the rim of the wheel.
- (a) A ball moving with velocity u impinges directly on an equally ball moving with velocity v in the opposite direction. It the first ball is brought to rest by impact, show that

u : v = (1 + e) : (1 - e), e = coefficient of restitution.

(b) A shell of mass m is projected from a gun of mass M by an explosion which generates kinetic energy E. Prove

that the initial velocity of the shell is $\sqrt{\frac{2EM}{m(M+m)}}$, assuming that the gun is free to recoil.