(i) Printed Pages: 3	Roll No
(ii) Questions : 7	Sub. Code: 0 3 4 9
	Exam. Code: 0 0 0 4
B.A./B.S	c. (General) 4th Semester
	(2053)
	PHYSICS
Paper:	C Quantum Physics-II
± .	
Time Allowed: Three Ho	ours] [Maximum Marks : 44
6. T	ive questions in all, selecting two questions. Unit I and Unit II. Unit III is compulsory.
(ii) Use of nor	n-programmable calculator is allowed.
	UNIT—I
1. (a) Derive an express	sion for total magnetic moment of an electron
in an atom due to	o interaction of its orbital and spin angular
momenta.	6
(b) What is the value	of spin magnetic moment of a free electron
in terms of Bohr	magneton?
2. (a) Discuss quantum	mechanical theory of anomalous Zeeman
	al reference to D1 and D2 lines of sodium.
Draw clear diagra	am. 6
(b) Derive an expres	sion for Land's g-factor.

3. What is Paschen Back effect? Explain this effect in weak and (a) strong magnetic field. Find the orbital angular momentum for 3f electron. Also find magnitudes of its possible z-components. 3 UNIT—II Explain L-S coupling and write the spectral terms for atoms 4. . with two equivalent electrons. 6 Is ${}^{2}D_{70}$ is possible term? Why? (b) 3 5. State and explain Mosley's law. Derive it from Bohr theory. Give its physical significance. (b) What voltage must be applied to an X-ray tube for it to emit X-rays with minimum wavelength of 0.4Å? 3 6. Give theory of vibrational energy levels of diatomic molecule. (a) How frequency of different spectral lines results from them? 6 Discuss the Franck-Condon principle in emission. Discuss its (b)

UNIT-III

7. Attempt any eight parts:

importance.

- (i) What is continuum of energy states?
- (ii) What is Larmor precession?
- (iii) How many electrons would be there if all electronic shells through n=5 is completely occupied?

- (iv) What is the root cause of the spectral lines of an atom?
- (v) What is Moseley's law?
- (vi) Why does symmetric orbital wave function leads to binding in the H, molecule?
- (vii) What are non-equivalent electrons?
- (viii) What is fine structure of Hydrogen atom?
- (ix) What do you mean by space quantization?
- (x) Can the Stern-Garlach experiment be performed with ions rather than neutral atoms? $1 \times 8 = 8$