(i)	Printed Pages: 4	Roll No

B.A./B.Sc. (General) 4th Semester (2053)

CHEMISTRY

(Same for B.Sc. Microbial & Food Technology)
Paper: XIII Inorganic Chemistry-B

Time Allowed: Three Hours [Maximum Marks: 22

Note:—Attempt FIVE questions in all, ONE question from each unit and the compulsory Q. No. 1.

(Compulsory Question)

- 1. (a) What happens when a lanthonoid reacts with:
 - (i) mineral acid
 - (ii) water ?
 - (b) Name the lanthanide element which is:
 - (i) Radioactive
 - (ii) Does not exist in nature.
 - (c) Compare the pk_a of formic acid and acetic acid.
 - (d) Give two properties showing that Liq. NH₃ is better solvent than water.
 - (e) Identify the oxidant and the reductant in the following reactions:
 - (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - (ii) $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$.

- (f) Find out the oxidation number of Cr in following species:
 - (i) CrO,
 - (ii) CrO₄²⁻

 $1 \times 6 = 6$

UNIT-I

- 2. (a) Describe the chemistry of separation of Np, Pu, Am and U.
 - (b) Give reasons for the following:
 - (i) Eu(II) is more stable than Ce(II)
 - (ii) Gd₂O₃ is more basic than YbO

2,2

- 3. (a) La³⁺, Lu³⁺ and Ce⁴⁺ ions are diamagnetic while Sm³⁺ shows low paramagnetism. Explain.
 - (b) Explain why f-block elements are called inner-transition metals.
 - (c) Compare the following properties of the lanthanides and actinides.
 - (i) Oxidation states
 - (ii) Magnetic properties
 - (iii) Oxoanion formation
 - (iv) Radioactivity

1,1,2

UNIT-II

- 4. (a) Compare the acidic character of HOI, HOBr and HOCl.
 - (b) Arrange BF₃, BCl₃, BBr₃ and BI₃ in an increasing order of the acidic character and also give a suitable explanation for your answer.
 - (c) Using suitable reactions show that Al₂O₃ is amphoteric in nature. 1½,1½,1

- 5. (a) Why AlCl₃ exists an dimer but BCl₃ does not?
 - (b) Explain why Cl-OH is acidic whereas Na-OH is basic in nature?
 - (c) Give reasons for the following:
 - (i) [AgI₂] complex is stable but [AgF₂] is not.
 - (ii) [Co(NH₃)₅F]²⁺ is stable but [Co(NH₃)₅I]²⁺ is unstable.

UNIT-III

 (a) Draw a Frost diagram for mercury in acid solution from the given Latimer diagram

$$Hg^{2+} \xrightarrow{+0.911} Hg_2^{2+} \xrightarrow{+0.796} Hg$$

Comment on the tendency of any of the species to act as an oxidizing agent or to undergo disproportionation.

- (b) What are Ellingham diagrams? What characteristic features of these diagrams are helpful in selecting the reducing agent for the reduction of metal oxides?
- (c) How Gibb's Free energy change is related to:
 - (i) Equilibrium constant
 - (ii) Cell potential

11/2,11/2,1

- 7. (a) Discuss the following with reference to the extraction of elements with suitable examples:
 - (i) Auto-reduction
 - (ii) Smelting
 - (iii) Hydrometallurgy.

(b) Consider the Latimer diagram:

$$ClO_3^- \xrightarrow{+1.15V} ClO_2 \xrightarrow{+1.28V} HClO_2$$

$$E^\circ = ?$$

Calculate the value of E° for the reduction of ClO_3^- to $HClO_2$.

(c) Using suitable example define disproportionation reaction.

UNIT-IV

- 8. (a) Give reason for the following:
 - (i) Electric conductivity of liquid NH₃ is increased when NH₄Cl is dissolved in it.
 - (ii) Na solution in liquid NH₃ is blue in color and good reducing agent.
 - (b) Complete the following reactions:
 - (i) NbCl₅ $\xrightarrow{\text{Liq. SO}_2}$
 - (ii) $Ag(CH_3COO) + SOCl_2 \xrightarrow{Liq.SO_2}$
 - (c) Give reasons for the following:
 - (i) Strong oxidizing agents do not exist in Liq. NH₃.
 - (ii) K_2SO_3 is soluble in Liq. SO_2 . 1,1,2
- 9. (a) Complete the following reactions:
 - (i) $HgI_2 + KI \xrightarrow{Liq.SO_2}$
 - (ii) $Zn(NH_2)_2 + NH_4Cl \xrightarrow{Liq. NH_3}$
 - (iii) $SbCl_3 + 3 LiI \xrightarrow{Liq.SO_2}$
 - (iv) $C_6H_6 + SO_3 \xrightarrow{\text{Liq. SO}_2}$
 - (b) Compare the solubilities of AgF, AgCl, AgBr and AgI in Liq. NH₃.
 - (c) Define aprotic and coordinating solvents. Give suitable examples. 2,1,1