(i) Printed Pages: 3 Roll No.

(ii) Questions : 8 Sub. Code : 0 1 4 5

Exam. Code: 0 0 0 2

B.A./B.Sc. (General) 2nd Semester (2053)

MATHEMATICS

Paper-I: Solid Geometry

Time Allowed: Three Hours] [Maximum Marks: 30

Note:—Attempt FIVE questions in all, selecting at least TWO questions from each unit.

UNIT-I

- (a) Shift the origin to a suitable point so that the equation x² + y² + z² 4x 8y + 6z 4 = 0 is transformed into an equation in which first degree terms are absent.
 - (b) Transform the equation $13x^2 + 13y^2 + 10z^2 + 8xy 4yz 4zx 144 = 0$, when the axes are rotated to the axes having direction cosines $<-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}>, <\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}>$ and $<\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}>$.

- 2. (a) Show that the two circles $x^2 + y^2 + z^2 y + 2z = 0$, x y + z 2 = 0; $x^2 + y^2 + z^2 + x 3y + z 5 = 0$, 2x y + 4z 1 = 0 lie on the same sphere and find its equation.
 - (b) Find the equation of the sphere which touches the plane 3x + 2y z = 6 at the point P(1, 2, 1) and cuts orthogonally the sphere $x^2 + y^2 + z^2 4x + 6y + 4 = 0$. $2 \times 3 = 6$
- 3. (a) Find the equation of the cylinder whose generators are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and guiding curve is $x^2 + y^2 = 16$, z = 0.
 - (b) Find the equation of the right circular cylinder of radius 2, whose axis is the line $\frac{x-1}{2} = \frac{y}{1} = \frac{z-3}{2}$.
- 4. (a) Find the limiting points of the co-axial system determined by two spheres whose equations are
 x² + y² + z² 8x + 2y 2z + 32 = 0 and
 x² + y² + z² 7x + z + 23 = 0.
 - (b) Find the enveloping cylinder of the sphere $x^2 + y^2 + z^2 = 25$, whose generators are parallel to the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$. $2 \times 3 = 6$

UNIT-II

- (a) Find the equation of right circular cone which passes through (1, 1, 1), whose vertex is (1, 0, 1) and axis of cone makes equal angles with co-ordinate axes.
 - (b) Find the equation of the cone which passes through the co-ordinate axes and the lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$, $\frac{x}{3} = \frac{y}{-1} = \frac{z}{1}$.
- (a) Find the equation of the cone whose vertex is at the point (0, 0, 5) and whose guiding curve is z = 3, x² + 2xy + 3y² = 1.
 - (b) Prove that the equation $x^2 2y^2 + 3z^2 4xy + 5yz 6zx + 8x 19y 2z 20 = 0$ represents a cone. Find its vertex. $2 \times 3 = 6$
- 7. (a) Identify the following surface: $2x^2 + 2y^2 + 3z^2 - 4x + 8y - 12z + 16 = 0$.
 - (b) Find the equation of the surface generated by the revolution of the circle x² + y² 2ay + a² r² = 0;
 z = 0 about the x-axis (a > r).
- 8. Prove that $5x^2 16y^2 + 5z^2 + 8yz 14zx + 8xy + 4x + 20y + 4z 24 = 0$ represents hyperbolic paraboloid.