(i)	Printed Pages: 3	Roll No

(ii) Questions : 7 Sub. Code : 0 1 4 9 Exam. Code : 0 0 0 2

B.A./B.Sc. (General) 2nd Semester

(2053)

PHYSICS

Paper: B-Vibrations, Waves & E.M. Theory-II

Time Allowed: Three Hours] [Maximum Marks: 44

- Note:—(1) Attempt FIVE questions in all, selecting TWO from each Unit-I and Unit-II.
 - (2) Unit-III is compulsory.
 - (3) Use of Non-programmable Scientific Calculator is allowed.

UNIT-I

- (a) What are transverse waves? Derive wave equation for such waves in a string.
 - (b) How does the wave function of a progressive wave differ from that of a stationary wave.
- (a) Derive an expression for the reflected energy coefficient and transmitted energy coefficient at the boundary between two media.

- (b) The sinusoidal wave is $y = 0.1 \sin 2\pi (0.01x 100t)$ where x, y are in metre and t in second. Calculate the speed of the wave.
- 3. (a) Find the relation between wave velocity and group velocity. Is group velocity greater than wave velocity?

 Comment.
 - (b) A wave of frequency 600 Hz is travelling with a velocity of 900 ms⁻¹ along x-axis. How far are two points situated whose displacements differ in phase by $\pi/4$?

UNIT-II

- 4. (a) Using Maxwell's equations derive wave equation for electromagnetic wave in a conducting medium. 6
 - (b) Show that in a conducting medium the displacement current leads the conduction current by $\pi/2$.
- 5. (a) Define Poynting Vector. What does it represent? State and prove Poynting theorem.
 - (b) Calculate the Poynting vector at the surface of the sun. Given that it radiates 3.8×10^{26} joule of energy per second and that the radius of the sun is 0.7×10^9 m.

3

- 6. (a) Define Skin depth. Show that it is inversely proportional to square root of conductivity of medium and frequency of electromagnetic waves.
 - (b) Calculate the skin depth for a frequency of 1010 Hz for silver. Given that $\sigma = 2 \times 10^7 \text{ Sm}^{-1}$ and $\mu = 4\pi \times 10^7 \text{ m}^{-1}$.

UNIT-III

- 7. Attempt any EIGHT parts. Each part carries 1 mark.
 - (a) What are standing waves?
 - (b) What is the velocity of em waves in free space and in medium?
 - (c) Differentiate between conduction current and displacement current.
 - (d) Define Phase velocity and group velocity.
 - (e) Give two applications of impedance matching.
 - (f) Define Skin depth.
 - (g) Define refractive index of an object.
 - (h) Differentiate between mechanical and EM waves.
 - (i) What is the value of impedance of dielectric EM waves in vacuum?
 - (j) What are nodes and antinodes?