•••••
•

(ii) Questions :9 Sub. Code : 0 1 6 1 Exam. Code : 0 0 0 2

B.A./B.Sc. (General) 2nd Semester (2053)

BIO-CHEMISTRY

Paper: B Enzymes and Bioenergetics

Time Allowed: Three Hours] [Maximum Marks: 45

- Note: Attempt *five* questions in total including Question No. I which is compulsory. Attempt *one* question from each of the Unit I to Unit IV.
- I. Compulsory Question. Answer in 3-4 lines.
 - (i) What is a prosthetic group? Give a suitable example.
 - (ii) What is the function of Co-A in biosynthetic pathways?
 - (iii) What is Kcat?
 - (iv) What is turnover number of an enzyme?
 - (v) Write chemical structure of FAD.
 - (vi) What is Km and its significance?
 - (vii) What are hydrolases? Give suitable examples.
 - (viii) What is end-product inhibition?
 - (ix) How CO (carbon monoxide) inhibits the mitochondrial-ETC?

9×1=9

UNIT-I

- II. (a) What are isozymes? Describe their properties and important biological functions.
 - (b) What are zymogens? Explain their importance in clinical diagnostic studies.
 - (c) What is an apoenzyme? Explain with suitable example. 4,3,2
- III. (a) Describe IUB system of classification of enzymes by referring major biological functions of each class.
 - (b) What are coenzymes? Describe important functions of NAD and FAD in bioenergetics pathways.
 - (c) What are dehydrogenases? Describe their importance in glycolytic pathway. 4,3,2

UNIT—II

- IV. (a) What are monomeric enzymes? How their activities are influenced by dictary factors?
 - (b) What are multimeric enzymes? Explain their properties and functions with suitable examples.
 - (c) What is a non-specific protease? Explain the mechanism of enzymatic action of chymotrypsin. 4,3,2
- V. (a) What are oligomeric enzymes? Describe their important properties and major biological functions.

	(b) Write short notes on any two of the following:			
		(i)	Theory of enzyme catalysis.	
	77.	(ii)	Acid-base catalysis	
		(iii)	Alkaline proteases.	3×2=6
			UNIT—III	
VI.	(a)	Wha any	at is Michaelis-Menten equation and it?	ts limitations, i
	(b)		at is a competitive enzyme inhibitor? Expl nples.	lain with suitable
	(c)	Wha	at is feedback inhibition? How it can l	be overcome? 4,3,2
VII.	(a)		at are metabolic inhibitors? Describe the lical sciences.	ir importance in
	(b)	Wha	at is Ki? How it is determined?	
	(c)	Wha	at is V _{max} ? How it can be enhanced? UNIT—IV	4,3,2
VIII.	. (a)		at are redox agents? Enlist any three of the functions.	ese and describe 5
	(b)	What are major biological functions of FAD/FADH in thermodynamic reactions?		
IX.	(a)		nt are phosphate-rich compounds? Descr nergetics reactions.	ribe their role in 3
	(b)	Writ	te short notes on any two of the followi	ng :—
		(i)	Enthalpy	
		(ii)	Oxidative phosphorylation	
		(iii)	Exergonic reactions.	3×2=6