(i)	Printed Pages: 3	Roll No

(ii) Questions : 9 Sub. Code : 3 7 2 4 Exam. Code : 0 4 7 5

M.Sc. Physics 4th Semester (2053)

NUCLEAR PHYSICS—II

Paper: PHY-8044

Time Allowed: Three Hours] [Maximum Marks: 80

Note:—Attempt FIVE questions in all, selecting ONE question each from Units I to IV. Question No. 9 from Unit V is compulsory to attempt.

UNIT-I

- (a) Prove that energy shift due to spin-orbit potential in the shell model increases with the values of orbital angular momentum '\ell'.
 - (b) Calculate the coupled state and corresponding C.G. coefficients for two particles with $j_1 = j_2 = \frac{1}{2}$.
- (a) Discuss the Russell-Saunder's Coupling (LS-Coupling) and j-j Coupling Schemes.
 - (b) Determine the Harmonic Oscillator frequencies 'ω' appropriate to the nuclei ¹⁷O and ⁶⁰Ni.

UNIT-II

- 3. (a) What are various collective surface fluctuations? Also, mention the processes associated with these fluctuations.
 - (b) Prove that the energies of nuclear vibrational level with one phonon ($\lambda = 3$) is equal to the energy of 2-phonon with ($\lambda = 2$).
- 4. (a) What is Nuclear Rotational Motion? Derive the rotational energy spectra and nuclear wave function for an odd-A nuclei.
 - (b) Define Rotation Matrix and explain how the rotation about an arbitrary axis 'X' can be expressed in terms of Euler's angles of rotations.

UNIT—III

- (a) What is optical model? Derive theoretical cross-sections with the optical model and compare it with experimental value.
 - (b) Derive the Breit-Wigner Dispersion formula. 8
- (a) What are stripping and pick-up reactions? Explain with examples. Obtain the relation for pick-up cross-section in terms of relative momenta of incoming and outgoing particles.
 - (b) Discuss the statistical model for the theory of a compound nucleus. Derive the evaporation probability and cross-section for specific reactions. Also, discuss the basic properties of direct and compound nuclear formation.

UNIT—IV

- 7. (a) Explain the features of Nillson model and obtain the deformed Hamiltonian for the same. How it differs from Standard Shell model?
 - (b) Write and explain the phenomenon of Back-bending in detail.
- 8. (a) Describe Cranking model and give its salient features.

 Compare this model with Nillson model.
 - (b) Write a brief note on the kinematics and dynamical moment of Inertia.

UNIT-V

- 9. (a) Write down the shell configuration for 30 Zn⁶⁷ and 43 Tc⁹⁹.
 - (b) What do you mean by Nuclear halos?
 - (c) What is iso-scalar vibrations?
 - (d) What is difference between single particle, extreme particle and independent shell models?
 - (e) In what situation statistical model can be used for fusion?
 - (f) What is difference between rotational and vibrational nucleus?
 - (g) What is Nordheim's rule?
 - (h) Define seniority quantum numbers. $8\times2=16$