Exam.Code:0434 Sub. Code: 3460

2053

M.Sc. (Applied Chemistry/Pharmaceutical) Fourth Semester Paper - 402: Chemical Process Development

Time allowed: 3 Hours

Max. Marks: 60

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting one question from each Unit.

- Attempt the following:-I.
 - a) Differentiate between- Recycle and By Pass stream.
 - b) Name any two pressure measuring devices.
 - c) Differentiate between series and parallel reactions.
 - d) Define a plug flow reactor
 - e) What is Viscosity? Write its CGS and SI units.
 - Define pressure transducers.

(6x2)

UNIT - I

- a) Name some chemical process industries. Discuss the importance of utilities in II. chemical process industries.
 - balance involved in material & energy b) Explain the various steps (2x6)calculations.
- a) Discuss the effect of temperature and pressure on heat of reaction. III.
 - b) Calculate the specific enthalpy in J/mol of ethyl alcohol at 1 bar 200°C taking datum temperature as 0°C. C_p of liquid at 0°C is 24.65 cal /mol°C. At 100 °C C_p is 37.96 cal /mol°C. Boiling point of ethyl alcohol at 1 bar is 78.4°C. Latent heat of vaporization =9.22kcal/mol. (2x6)

UNIT - II

- IV. a) Differentiate between the following:
 - i) Molecularity and order of the reaction
 - ii) Reaction rate constant and equilibrium constant
 - iii) Space time and mean residence time
 - iv) Homogeneous catalysis and Auto catalysis.
 - b) The gas reaction 2A → R + 2S is approximately second order with respect to A, when pure A is introduced at 1 atm into a constant volume batch reactor, the pressure rises 40% in 3 min. For a constant pressure batch reactor find the time required for the same conversion and the fractional increase in volume at that (2x6)time.

- a) Write a note on Differential method of analysis, ٧.
 - b) On doubling the concentration of reactant, the rate of reaction triples. Find the (2x6)reaction order.

<u>UNIT - III</u>

- a) Derive the design equation for constant density for ideal Plug Flow reactor. VI.
 - b) An aqueous feed containing A (1 mol/lt) enters a 2 litre plug flow reactors and reacts away (2A \rightarrow R, -r_A = 0.05 C_A² mol/lt.s). Find the outlet concentration of A for a feed rate of 0.5 lt/min. (2x6)
- Discuss the factors to be considered in the selection of materials for pharmaceutical VII. plant construction. (12)

<u>UNIT - IV</u>

- VIII. a) Explain with a neat sketch the working of a capillary viscometer.
 - b) Write a note on inclined manometer.

(2x6)

- IX. a) Name any one pressure measurement device and explain the working of any one.
 - b) Write a note on rotating concentric cylinder viscometer.

(2x6)

x-x-x