(i)	Printed Pages: 3		Roll No				
(ii)	Questions	: 9	Sub. Code:	3	7	0	4
			Exam. Code:	0	4	7	2

M.Sc. Physics 1st Semester

(2123)

QUANTUM MECHANICS-I

Paper—PHY-8013

Time Allowed: Three Hours] [Maximum Marks: 80

Note:—Attempt FIVE questions in all, selecting ONE question each from Unit I to IV. Unit-V is compulsory.

UNIT-I

- (a) State and prove Schwartz inequality.
 - (b) Given a set of N-linearly independent vector, explain the procedure to construct ortho normal set out of them. 8,8
- II. (a) Solve Simple Harmonic Oscillator by operator algebra, for its eigen values and eigen vectors.
 - (b) How does a quantum mechanical system evolve under Heisenberg representation? 12,4

UNIT-II

- III. (a) Show that the eigen values of L² operator are $\ell(\ell+1)\hbar^2$.
 - (b) Obtain the matrix representation of J_x operator for spin

$$\frac{1}{2}$$
.

8,8

- Find Clebsch-Gordon coefficients for $\vec{J_1} = \frac{1}{2}$ and $\vec{J_2} = 1$. IV. (a)
 - Using basic commutator $[x_i, p_j] = i\hbar \delta_{ij}$, work out the commutator:
- $[L_x, p_z]$ and (ii) $[L_x, L_z]$

10,6

UNIT-III

- Write a note on degenerate perturbation theory. V. (a)
 - Choosing $\psi(x) = e^{-\alpha x^2}$ as ground state trial wave function, estimate the ground state energy of the Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}mw^2x^2$$
. 8,8

- Develop the non-degenerate perturbation theory and obtain VI. (a) expression for the first order correction to energy.
 - A linear Simple Harmonic Oscillator is perturbed by the (b) potential $V(x) = ax^3$. What is the first order correction to the ground state energy and first excited state energy?

10,6

UNIT-IV

- VII. (a) Explain Fermi-Golden rule and apply it to explain radiative transitions in atoms.
 - Write a note on Einstein coefficients.

8,8

- VIII.(a) Obtain the general expression for the probability of transition from one state to another under constant harmonic time dependent perturbation.
 - (b) What are the selection rules for emission and absorption of light?

UNIT-V

- IX. (a) Explain the role of complete set of commuting operators in describing a quantum system.

 3
 - (b) Explain why the variational method always gives an upper limit for the ground state energy of the system.
 - (c) Explain the concept of degeneracy. 3
 - (d) When is the perturbation theory applicable?
 - (e) What is unitary operator? What is its relevance in physics?
 - (f) State two postulates of quantum mechanics. 2