(i)	Printed Pag	ges:3	Roll No.
(ii)	Questions	: 9	Sub. Code: 3 7 1 9
			Exam. Code: 0 4 7 4
		M.Sc.	Physics 3 rd Semester
			(2123)
	CLAS	SICAL	ELECTRODYNAMICS-II

Paper: PHY-8034

Time Allowed: Three Hours] [Maximum Marks: 60

Note :- Answer FIVE questions in all, selecting ONE question each from Units I-IV and the compulsory questions from Unit-V.

UNIT-I

- (a) Prove that Lorentz transformations form a group which 1. implies the resultant of two successive Lorentz transformations is a Lorentz transformation. 6
 - (b) Explain the terms:
 - (i) Four-Velocity
 - (ii) Four acceleration
 - (iii) Four-momentum.

 $3 \times 2 = 6$

- (a) Obtain the expression for minimum Kinetic energy of 2. m_2 in the decay $M \rightarrow m_1 + m_2$ using energy-momentum relation for the decay to occur.
 - (b) Construct the four components of four Minkowski force.

6

UNIT—II

- (a) Discuss the non-relativistic motion of a charged particle in constant uniform magnetic field. Also discuss different conservation laws that hold goods in this case.
 - (b) Write a note on the following:
 - (i) Gradient Drift
 - (ii) Curvature Drift

3,3

- (a) Discuss the relativistic motion of a charged particle in the field of plane electromagnetic wave.
 - (b) Describe the motion of a non-relativistic charged particle
 in a slowly varying magnetic field.

UNIT—III

- 5. (a) Derive an expression for the Lagrangian of a charged particle in an electromagnetic field.
 - (b) Show that the Four-tensor F_{uv} for the electromagnetic field must be totally antisymmetric.
- 6. (a) From principle of least action, obtain the expression of a charged particle in an electromagnetic field.
 - (b) Starting from the four-dimensional form of homogeneous Maxwell's equations, viz

$$\sum \frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = 0 (\mu = 0, 1, 2, 3).$$

Obtain the wave equation for the field in a vacuum in the four-dimensional form.

UNIT-IV

7,	(a)	Write a note on Thomson scattering.	6
	(b)	What are Lienard-Wiechert potentials? Obtain expression for retarded scalar potential.	the
8.	(a)	Write a note on Rayleigh Scattering.	6
	(b)	Derive an expression for radiated power from accelerated charge at low velocities.	a:
		UNIT—V	
9.	(a)	Show that four velocity vector and four acceleration orthogonal to each other.	are

- (c) What is radiation reaction ?
- (d) What do you known about the term Bremsstrahlung?
- (e) State postulates of Special theory of relativity.
- (f) What is Minkowski space? 6×2=12