Exam Code: 1383 Sub. Code: 9450

2123

B. Voc. (Logistic Management) Fifth Semester

Paper-LEM-505: Operations Research

Time allowed: 3 Hours

Max. Marks: 80

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting one question from each Unit.

x-x-x

Q1. Attempt any four of the following questions.

 (4×5)

- a) Explain the concept of optimization in the context of operations research.
- b) Explain the principle of duality in linear programming.
- c) What is a balanced matrix in assignment problem?
- d) Differentiate between M/M/1 and M/M/S queuing models.
- e) What do you understand by Simulation?
- f) Differentiate between pure and mixed strategies.

Unit-I (1 x 15)

- Q2. Explain the foundational principles and theories that underpin Operations Research. Discuss how these principles contribute to the systematic decision-making process in various industries.
- Q3. Solve the following linear programming problem.

Max
$$Z = 30x_1 + 23x_2 + 29x_3$$

$$6x_1 + 5x_2 + 3x_3 \le 52$$

$$6x_1 + 2x_2 + 5x_3 \le 14$$

$$x_1, x_2, x_3 \ge 0$$

Unit-II (1 x 15)

Explain the concept of the Assignment Problem in Operations Research. Provide a detailed Q4. overview of the Hungarian Algorithm as a method for solving Assignment Problems.

Q5.

Solve the following TP to maximize the profit.

			Destination	7		
		A	В	C	D	Supply
Source	1	40	25	22	33	100
	2	44	35	30	30	30
	3	38	38	28	30	70
	Demand	40	20	60	30	

Unit-III (1 x 15)

Q6.

We have seven jobs, each of which has to go through the machines M_1 and M_2 in the order M_1 M_2 . Processing time (in hours) are given as:

Job	1	2	3	4	5	6	7
Machine /	3	12	15	6	10	11	9
Machine //	8	10	10	6	12		-

Determine a sequence of these jobs that will minimize the total elapsed time.

Q7. Explore the key principles of Queuing Theory. Provide an example of a system where queuing theory can be applied to optimize performance.

Unit-IV (1 x 15)

Q8. Explore the process of decision analysis in operations research. Using a practical example, discuss the steps involved in decision analysis, including decision trees, probabilities, and utility functions, and highlight its applications in business decision-making.

Q9.

Reduce the following game to '3 × 2' by dominance principle and then solve it by graphical method:

Player B

y1 y2 y3 y4 19 XI 6 7 5 Player A 7 X2 3 14 6 12 x_3 8 18 4 8 X_4 13