(1)	Frinted Pag	es: 3.	Roll No				
(ii)	Questions	: 8	Sub. Code:	0	0	4	5
			Evam Code	0	0	0	1

B.A./B.Sc. (General) 1st Semester (2123)

MATHEMATICS

Paper-III: Trigonometry & Matrices

Time Allowed: Three Hours] [Maximum Marks: 30

Note: — Attempt five questions in all, selecting at least two questions from each Unit.

UNIT-I

1. (a) Apply De Moivre's theorem to find an equation whose roots are the n^{th} powers of the roots of the equation $x^2 - 2x \cos\theta + 1 = 0$.

(b) If
$$x + \frac{1}{x} = 2\cos\theta$$
, prove that $x^{n} + \frac{1}{x^{n}} = 2\cos\theta$. 3,3

- 2. (a) Prove that the n^{th} roots of unity form a series in G.P. Also show that their sum is zero and product is equal to $(-1)^{n-1}$.
 - (b) Find all the values of $\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$ and show that the

continued product of all the values is 1.

3,3

- (a) Show that each primitive 6th root of unity satisfies $z^2 - z + 1 = 0.$
 - Solve $x^9 x^5 + x^4 1 = 0$. 3,3 (b)
- Expand cos⁵θ sin⁷θ in a series of sines of multiples of θ. (a) 4.
 - If i' * = A + iB and only principal values are considered. prove that:

$$\tan \frac{\pi A}{2} = \frac{B}{A}.$$
UNIT—II

(a) Express the matrix $A = \begin{bmatrix} 2-i & 3 & 1+i \\ -5 & 0 & -6i \\ 7 & i & -3+2i \end{bmatrix}$ as the sum of

a hermitian and a skew-hermitian matrix.

(b) Show that rank of \[\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] is less than 3, iff either

$$a + b + c = 0$$
 or $a = b = c$.

Find the matrices P and Q such that PAQ is in the normal form, 6. when A is the matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0 \end{bmatrix}$$

6

7. Examine the consistency of the following equation and if consistent, final the complete solution:

$$x + 2y - z = 3$$

$$3x - y + 2z = 1$$

$$2x - 2y + 3z = 2$$
.

- 8. (a) Prove that characteristic roots of a unity matrix are of unit modulus.
 - (b) State and prove Cayley-Hamilton theorem. 3,3

6