

(i)

Questions (ii)

Sub. Code: Exam. Code:

6 0

B.A./B.Sc. (General) 1st Sem.

(2123)

PHYSICS

Paper: A Mechanics-I

[Maximum Marks: 44 Time Allowed: Three Hours

- Note: (1) Attempt five questions in all, selecting two from each Unit-I and Unit-II.
 - Unit-III is compulsory. (2)
 - Use of Non-programmable Scientific Calculator is (3) allowed.

UNIT-I

What are spherical polar coordinates? Show that for a (a) particle moving in space, the velocity in spherical polar coordinate system is expressed as:

$$\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta + r\dot{\phi}\sin\theta\,\hat{e}_\phi$$

- Define Solid angle. Show that the value of solid angle (b) subtended by sphere at its centre is 4π Steradian. 3
- 2. State and prove the law of conservation of angular (a) momentum for a system of n number of particles. 6

	Locate the centre of mass of a system of three particles	s of
	masses 1kg, 2kg, and 3kg placed at corners of equilate	eral
	triangle of side 2m.	3

- 3. (a) Discuss the law of homogeneity of space. Show that it leads to the law of conservation of linear momentum. 5
 - (b) Find whether force $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ is conservative or not. Where \hat{i} , \hat{j} and \hat{k} are unit vectors.

UNIT-II

- 4. (a) Determine the turning points in the trajectory of a particle moving under a central force. Also discuss the relation of shape of trajectory with total energy.
 - (b) The central force of interaction can be written as $U(r) = \frac{-Ke^{-ar}}{r}, \text{ where K and a are constants and } U(r) \text{ is }$ Yukawa potential. Find the value of force corresponding to given potential.}
- 5. (a) Show that the angular momentum of a particle moving under central forces remains constant.
 - (b) What is Rutherford scattering? Obtain an expression for the scattering cross-section for it.
- 6. (a) Show that for elastic collisions in lab frame of reference $\varphi + \alpha = 90^{\circ}$.
 - (b) Neutron with mass 1.67×10⁻²⁷ kg moving with velocity 10⁷m/s collides with a deuteron at rest and sticks to it. Calculate the velocity of the combination.

(Given, mass of deuteron is 3.34×10⁻²⁷ Kg)

UNIT-III

- 7. Attempt any Eight parts. Each part carries 1 mark.
 - (a) What is the relation between Cartesian and spherical polar co-ordinates?
 - (b) Write an expression for velocity of centre of mass.
 - (c) Define angular momentum.
 - (d) Define homogeneity of space.
 - (e) What is conservative force?
 - (f) How many forces are there in nature? Name them.
 - (g) What are central forces?
 - (h) What is a difference between elastic and inelastic collision?
 - (i) What do you mean by centre of mass?
 - (j) State Kepler's Third Law.

 $8 \times 1 = 8$