(i)	Pı	rinted Pages : 2	Roll No	
(ii)	Q	uestions : 8	Sub. Code:	0 2 4 2
			Exam. Code:	
		B.A./B.Sc. (C	General) 3rd Semest	
			(2123)	18
		MAT	HEMATICS	
		Paper—II : (Di	fferential Equation	is-I)
Ti	me A	llowed : Three Hou	rs] [Maxim	um Marks: 30
No	te :-	- Attempt five question	ons in all by selecting	at least two from
		each unit.		
			UNIT-I	
1.	(a)	Define exact differer	ntial equation & solve	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{x} - 4\mathrm{y} + 7}{4\mathrm{x} + \mathrm{y} - 8}$
		by proving it is exact	ct.	3
	(b)	If:		
		Mdx + Ndy = 0 is of	the form $f_1(xy)$. ydx	$+ f_2(xy). xdy = 0.$
		Then show that $\frac{1}{M^{3}}$	$\frac{1}{x - Ny}$ is I.F, Mx -	$-Ny \neq 0.$ 3
2.	(a)	Solve $y = 2px + y^2$	p^3 .	3
	(b)	Find Singular soluti	on of $y = px + p^2$.	3

(a)

Find orthogonal trajectories of $y^2 = 4ax$.

(b) Solve $(D^2 + 2D + 1) y = e^{-x}$.

4. (a) Solve $(D^2 + 4) y = x \cos x$.

(b) Solve $(D^2 - 3D + 2)$ y = cos (e^{-x}) .

3

UNIT-II

5. (a) Solve $(x^2 D^2 - xD + 1) y = 2 \log x$.

(b) Solve
$$(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x) \frac{dy}{dx} + 8y = 0$$
.

6. (a) Solve by variation of parameters $(D^2 + a^2) y = \sec ax$. 3

(b) Solve by reduction of order $(D^2 + 4)$ $y = \sin 2x$.

7. (a) Solve $\{x^2 D^2 - 2x (1+x) D + 2 (1+x)\} y = x^2$,

where
$$D = \frac{d}{dx}$$
.

(b) Find general solution of the system:

$$\frac{dx}{dt} = 5x + 4y, \frac{dy}{dt} = -x + y.$$

8. Solve:
$$\sqrt{x} \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} + 3y = x, x > 0$$
.