(i)	Printed Pages: 4		Roll No				
(ii)	Questions : 7	. 7	Sub. Code: Exam. Code:	0	2	4	7
				0	0	0	3

B.A./B.Sc. (General) 3rd Semester (2123)

PHYSICS

Paper-A (Statistical Physics & Thermodynamics-I)

Time Allowed: Three Hours] [Maximum Marks: 44

- Note:—(1) Attempt five questions in all, selecting two questions each from Unit-I and Unit-II. Unit-III is compulsory.
 - (2) Use of logarithmic tables and non-programmable calculator is allowed.

UNIT-I

 (a) For N distinguishable particles to be distributed in two compartments, prove that thermodynamic probability of microstate (N₁, N₂) is:

$$W(N_1, N_2) = \frac{N_1!}{N_1! N_2!}$$
 where $N = N_1 + N_2$.

(b) A bag contains 10 white and 8 black balls. Two balls are drawn in succession from the bag. Calculate the probability that the two balls drawn are both white.

- (a) What do you mean by most probable macrostate? Derive an expression for the probability of this state corresponding to distribution of N particles in two identical compartments.
 - (b) 5 × 10¹⁰ gas molecules are enclosed in a cubical volume. Imagine the volume to be divided into two equal halves. Calculate the probability for a state in which the number of molecules in a given state are only 0.001% different from that of equilibrium state.
- 3. (a) Explain in detail about total no. of microstates contained in a macrostate (3, 1) corresponding to distribution of 4 particles in 2 compartments in tabular form assuming particles to be:
 - (i) Distinguishable
 - (ii) Indistinguishable.

b) 8 distinguishable particles are distributed in 2 compartments of unequal sizes. The first compartment is further divided into 2 cells of equal sizes. Calculate probability of:

6

3

- (i) Macrostate (5, 3)
- (ii) Most probable macrostate.

UNIT-II

- (a) Explain in detail about experimental verification of Maxwell-Boltzmann Distribution of molecular speeds.
 - (b) Derive an expression for phase space volume of energy compartment.
 3

5. (a) Derive Fermi-Dirac distribution law.

7

- (b) Calculate:
 - (i) Most probable speed
 - (ii) Average speed of Nitrogen at 300 K Given $K = 1.38 \times 10^{-16} \text{ erg K}^{-1}$

Avogadro No. = 6×10^{23} molecules/mole. 2

- (a) What is Stefan's Law? Show that total energy density of radiation inside container is proportional to T⁴.
 - (b) Difference between Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.
 3

UNIT-III

- 7. Attempt any eight questions. Each question carries 1 mark:
 - (a) How does classical statistics differ from quantum statistics?
 - (b) Do electrons have zero energy at 0 K? If not, explain why?
 - (c) What is effect of Pauli Exclusion Principle on Macrostate?
 - (d) What is occupation index? What is its functional form at T = 0 K for a system of fermions?
 - (e) Why there is need to divide compartments into cells if we take the concept of phase space ?

- (f) What is difference between Macrostate and Microstate?
- (g) What is difference between static and dynamic system?
- (h) Distinguish between position, momentum and phase space.
- (i) What is the importance of most probable macrostate?
- (j) What determines the distribution of molecular speeds in ideal gas? 8×1=8