(i)	Print	ed Pages: 3 Roll No
(ii)		Sub. Code: 0 2 5 0 Exam. Code: 0 0 3
		B.A./B.Sc. (General) 3rd Semester
		(2123)
		CHEMISTRY
		Paper: IX (Inorganic Chemistry-A)
	(S	ame for B.Sc. Microbial & Food Technology)
	me All	owed: Three Hours] [Maximum Marks: 22
No	ote :-	Attempt FIVE questions in all, selecting ONE question
		each from Units I — IV and Question 9 is compulsory
		UNIT—I
1.	(a)	Draw and explain the structure of Copper (II) acetate
		monohydrate. Account for its low magnetic moment. 2
	(b)	Why do transition elements:
		(i) Give coloured and paramagnetic ions
		(ii) Exhibit good Catalytic properties? 2
2.	(a)	4 1 11: GIL 1 migrate 2d but on ionisation 4s electrons
		are removed first. Explain.
	(b)	Calculate the magnetic moment (spin only) for
		Mn^{2+} ion.
	(c)	Zinc forms only Zn^{2+} and not Zn^{3+} ions, why?

UNIT-II

3.	(a)	Compare second and third transition series with first seri	es
		in terms of:	
		(i) Metallic bonding	
		(ii) Spectrochemical properties.	2
	(b)	Give the stereochemistry of [Ag(CN) ₂] and [Ag (SCN))].
			2
4.	(a)	Why do Zr and Hf display similar properties.	2
	(b)	Write electronic configuration of $W(Z = 74)$.	1
	(c)	Draw the structure of Mo ₂ Cl ₉ ³	1
		UNIT—III	
5.	(a)	Explain giving one example of each kind of the following	ng
		isomerism:	
		(i) Co-ordination Isomerism.	
		(ii) Linkage Isomerism.	2
	(b)	Write IUPAC names of the following:	
		(i) [Pt (NH ₃) ₄ [PtCl ₄]	
		(ii) Na ₃ [Fe $(C_2O_4)_3$].	2
6.	(a)	Draw all possible isomers of [Co(en) ₂ Cl ₂] ⁺ .	2
	(b)	Calculate EAN of the central atom in:	
		(i) $[Cr(NH_3)_6]^{3+}$ and	
		(ii) [Cu (CN) ₄] ³⁻ and tell which of them obeys EA	N
		rule.	2

UNIT-IV

7.	(a)	[Ni (CN) ₄] ²⁻ is square planar while [NiCl ₄] ²⁻ is tetrahedral.		
		Explain on the basis of Valence Bond Theory.	3	
		II		

(b) How many unpaired electrons are present in [Fe(H₂O)₆]²⁺?

- 8. (a) Account for the different magnetic behaviour of hexacyanoferrate (III) and hexafluoroferrate (III) ions.
 3 (b) Name the Hybridisation in [Ni (CN)₄]²⁻ ion.
 1
 - (Compulsory Question)
- 9. (a) Which are the two common oxidation states of Gold? Which of these is unstable to disproportionation?
 - (b) Name two elements belonging to group of copper.
 - (c) How many Cl⁻ ions will be precipitated by AgNO₃ solution in CoCl₃.3NH₃ complex.
 - (d) Why do tetrahedral complexes not show geometrical isomerism?
 - (e) Give one example of an outer orbital complex.
 - (f) Which element in the first transition series show highest oxidation state. $1\times6=6$