(i) (ii)		Roll No				
B.A./B.Sc. (General) 5th Semester						
(2123)						
MATHEMATICS						
Paper—II : Modern Algebra						
Time Allowed: Three Hours] [Maximum Marks: 30						
Note: - Attempt FIVE questions in all by selecting at least						
TWO from each unit. UNIT—I						
	(-)	Prove that if G is semi group in which both cancellati	on			
1.	(a)	Laws hold is a group, where G is finite.	3			
	(b)	Show that Abelian group of order 6 is cyclic.	3			
2.	(a)	State and prove Lagrange's theorem on groups.	3			
2.	(b)	Prove that subgroup of index 2 is normal in that grou	p.			
	(0)		3			
3.	(a)	Show that every group of order p2 where p is prime num	ber			
٥.	(-)	is Abelian.	3			
	(b)	State and prove Cayley's theorem.	3			
4.	(a)	Show that subgroup of cyclic group is cyclic.	3			
	(b)	Find cosets of 2Z in Z.	3			

UNIT-II

5.	(a)	If I & J are ideals of ring R then show that I \cap J	is also
		ideal of R.	3

- (b) Show that there does not exist any I.D. with 10 elements; where I.D. is integral domain.
- (a) Define maximal and prime ideals of a ring and show that4Z is maximal ideal of 2Z.
 - (b) If in a ring R, $x^3 = x \ \forall \ x \in R$, then show that R is commutative.
- 7. (a) If $f: R \to R'$ is ring homomorphism then show that f is 1-1 iff ker $f = \{0\}$.
 - (b) Find all units of $Z_5[x]$.
- 8. Whow that M is maximal ideal of R iff R/m is field. 6