(i) P ₁	rinted	l Pages: 3 R	oll No
(ii) Q	uestic		Sub. Code: 0 1 4 9 xam. Code: 0 0 0 2
			neral) 2 nd Semester 054)
	Pape		YSICS Waves & E.M. Theory-II
Time Al	lowed	d : Three Hours]	[Maximum Marks : 44
Note :-	(2) (3) (4)	Unit-I and Unit-II Q. No. 7 of (Unit The use of non-pre After evaluation of marks will be give	e-III) is compulsory. ogrammable calculator is allowed. of answer books out of 44 marks, the en out of 22.
1. (a)	UNIT-I (a) Derive expression for reflection and transmission coefficient at the boundary between two media. What will be their values when impedance of transmitted section is:		
L 2	(i) (ii)	Zero and Infinity?	Fig. , what does 5
(b)		stretched by certain	densities in ratio 1:5 joined together force. Calculate: ed in the two strings.
	(ii)		smission coefficient of energy. 4

- (a) What do you mean by characteristic impedance of the string?
 Show that it is given by product of mass per unit length of string and wave velocity.
 - (b) Prove that average kinetic energy per unit volume is equal to average potential energy per unit volume and equal to half of total energy of progressive wave.
- 3. (a) Define the term wave velocity and group velocity. Find the relation between wave velocity and group velocity. How this relation become for a medium having normal, anomalous and no dispersion?
 - (b) Define standing wave ratio (SWR). Derive expression for it in terms of reflection coefficient.
 - (c) Two sinusoidal waves:

$$Y_1 = 0.03 \cos (7t - 10x) m$$

$$Y_2 = 0.03 \cos (5t - 7x) m$$

are superimposed. Calculate group velocity.

UNIT—II

- 4. (a) Using Maxwell equations, derive the wave equation of e.m. waves in the medium having finite permeability, permittivity but no conductivity ($\sigma = 0$).
 - (b) Prove that impedance of free space to e.m. waves is 377 ohm.

- 5. (a) Prove that amplitude of electromagnetic wave decreases exponentially with distance of penetration through a conductor.
 - (b) Define the skin depth. Derive the expression for skin depth.
- (a) What is the Poynting vector? State and prove Poynting theorem.
 - (b) If a 1000 W laser beam is concentrated by lens into crossectoin area of 10^{-10} m², find the Poynting vector and amplitude of electric field vector. Given $\varepsilon_0 = 9 \times 10^{-12}$ SI units.

UNIT—III

- 7. Attempt any eight parts:
 - (a) The sinusoidal wave is $y = 0.3 \sin 2\pi (0.04x 400t)$ where x, y are in meters and t in seconds. Calculate the speed of the wave.
 - (b) What is the impedance matching? Give its applications.
 - (c) Differentiate between progressive wave and stationary wave.
 - (d) Where will a person hear maximum sound —at node or antinode? Justify.
 - (e) Differentiate between e.m. waves and mechanical waves.
 - (f) Write down Maxwell equation which indicates monopole does not exist.
 - (g) Write down units of με.
 - (h) A plain radio wave has $E_0 = 10^{-4} \text{ Vm}^{-1}$. Calculate B_0 .
 - (i) If e.m. wave is incident from air to glass having refractive index 1.5. Calculate Reflection and Transmission coefficient of energy.

 8×1=8