(i)	Printed Pages: 3		Roll No		
(ii)	Questions	: 7	Sub. Code : $\begin{bmatrix} 0 & 3 \end{bmatrix}$	1 7	
·	(Exam. Code : $0 0 0$) 4	

B.A./B.Sc. (General) 4th Semester (2054)

PHYSICS

Paper-A: Statistical Physics and Thermodynamics-II

Time Allowed: Three Hours [Maximum Marks: 44

Note:—Attempt FIVE questions in all, selecting two each from Unit-I and Unit-II. Q. No. 7 of Unit-III is compulsory. From Q. No. 7 attempt any EIGHT parts.

UNIT—I

- 1. (a) Prove that entropy of a system remains constant during adiabatic reversible process. 5
- (b) Show that the process of diffusion of one gas into another is always accompanied by an increase in entropy.
- 2. (a) What is heat engine? Explain its principle, working and define efficiency. Why the efficiency of a heat engine cannot be 100%?
 - (b) Write a note on heat death of the universe. 3

4

- 3. (a) What is S-T diagram? Using it, derive an expression for efficiency of Carnot's heat engine.
 - (b) What is Thomson effect? How does a thermo couple act like a heat engine?

UNIT-II

- 4. Discuss the Joule-Thomson Experiment. Why does an ideal gas show neither a heating nor a cooling effect in Joule-Thomson experiment? Also explain why H₂ and Helium show heating effect in Joule-Thomson expansion at ordinary temperature.
- (a) Heat is produced by adiabatic compression of a substance.
 Explain it by using Maxwell's relations.
 - (b) The melting point of ice decreases and melting point of wax increases with increase in pressure. Explain. 3
- (a) Discuss the liquefiction of Helium making use of regenerative cooling effect. Prove that the change in temperature due to adiabatic expansion of any substance

is given by
$$dT = -\frac{T\beta P}{C_v} dV$$
.

(b) Write a note on Adiabatic demagnetization. 3

UNIT-III

- 7. (a) What do you understand by additive nature of entropy?
 - (b) What is thermal energy?

- (c) Explain the cyclic process.
- (d) What is thermodynamic probability? What is its minimum value?
- (e) Write Maxwell thermodynamic relations.
- (f) Find the change in energy of the system if 400 J of work is done on it, while 75 calorie heat flows out of it.
- (g) A Carnot heat engine absorbs 5000 J of heat from a reservoir at 327°C and rejects 2000 J heat during each cycle. Calculate efficiency of heat engine.
- (h) Explain intensive and extensive parameter with examples.
- (i) What is significance of $AS \ge 0$ relation to entropy?
- (j) Why $C_p > C_v$? $8 \times 1 = 8$