Exam.Code: 0006 Sub. Code: 0539

2054

B.A./B.Sc. (General) Sixth Semester Statistics

Faper-303: Statistical Quality Control and Computational Techniques

Time allowed: 3 Hours

Max. Marks: 65

NOTE: Attempt five questions in all, including Question No.1 which is compulsory and selecting two questions from each Unit. Use of simple non-programmable calculator is allowed. Statistical tables and log tables will be provided on request.

x-x-x

- 1. Provide concise answers to the following questions:
 - (a) What do control limits do in industrial processes?
 - (b) Define acceptance sampling and explain AQL and LTPD.
 - (c) Distinguish between Newton's and Lagrange's interpolation methods.
 - (d) What is the formulation of a Linear Programming Problem (LPP)? Provide a concise example.
 - (e) What's the significance of duality in Linear Programming Problems (LPPs)?

(3, 3, 3, 2, 2)

UNIT - I

- (a) Explain the role of quality assurance in ensuring consistent product quality andcustomer satisfaction.
 - (b) Describe the general theory of control charts and their applications in quality management. (6, 7)
- (a)Identify common causes of variations in industrial processes that affect product quality.
 - (b) Describe how mean and range charts are constructed and interpreted in monitoring process variability and maintaining process stability. (5, 8)
- 4. (a) Define control charts for attributes and explain their purpose in quality control.
 - (b) Explain the process of constructing and interpreting a control chart for monitoring the proportion of defective units in a manufacturing process. (6, 7)
- Explain the concept of acceptance sampling in quality control. Discuss the differences between single and double sampling plans, highlighting variations in ATI, ASN, and OC curves.

UNIT - II

- (a) Explain the role of difference tables and divided differences in interpolation techniques, and discuss how they contribute to the accuracy of interpolation.
 - (b) Using Simpson's 3/8 rule, approximate the value of the integral of the function $f(x) = e^{-x}$ from x = 0 to x = 1. Compare with exact integral also. (7, 6)
- (a) Describe the numerical techniques for differentiation, including the Trapezoidal rule and Simpson's one-third formula, and discuss their applications in approximating definite integrals.
 - (b) Using the Gauss-Seidel method, find the approximate solution of the following system of linear equations:

$$2x + 3y - z = 7$$
$$3x - y + 2z = 6$$
$$x + 2y + 3z = 10$$

Start with initial guesses: $x_0 = 0$, $y_0 = 0$, $z_0 = 0$. Perform three iterations. (8, 5)

- (a) Compare the graphical method and the simplex method for solving Linear Programming Problems (LPPs), highlighting their differences and advantages.
 - (b) Solve the following linear programming problem by simplex method, after converting it into dual problem:

Minimize
$$Z = 25x_1 + 10x_2$$

subject to $x_1 + x_2 = 50$
 $x_1 \ge 20$
 $x_2 \ge 40$,
 $x_1, x_2 \ge 0$. (7,6)

- 9. (a) What is a transportation problem? Write down the assumptions in the transportation model. Which is the best method to solve transportation problem?
 - (b) Determine an initial basic feasible solution to the following transportation problem using (i) North-West corner method, (ii) Vogel's approximation method:

		Destination					
		W_1	W_2	W_3	W_4	W_5	supply
Origin	Α	2	11	10	3	7	4
	$^{\mathrm{B}}$	1	4	7	2	1	8
	C	3	9	4	8	12	9
Demand		3	3	4	5	6	