(i)	Pri	nted Pages: 3 Roll No
(ii)	Qu	estions :9 Sub. Code: 0 9 7 8
		Exam. Code: 0 0 3 6
		B.Sc. (Hons.) Biotechnology 4th Semester
		(2054)
1	BIOP	HYSICAL AND BIOCHEMICAL TECHNIQUES
		Paper : BIOT-402-T
Tim	e All	owed: Three Hours] [Maximum Marks: 67
Note	e :—	(1) Attempt five question in all.
		(2) Question Number 1 is compulsory.
		(3) Attempt one question from each Section.
1.	Brie	fly answer the following:
	(i)	Role of the monochromator in a spectrophotometer. 2
	(ii)	Spin-spin coupling. 2
	(iii)	Role of the condenser in a microscope. 2
	(iv)	Cryo-electron microscopy and its advantage. 2
		"Unit cell" in the context of crystal structure. 2
		Principle of reverse-phase HPLC. 2
		Isotopic labelling and its application. 2
		Name any one application of tandem mass
		spectrometry.

SECTION-A

2.	(A)	Explain the principle of UV-Visible Spectro	photometry
		and its application in the determination	of protein
		concentration.	7

- (B) Compare and contrast the principles of atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES).
- (A) Explain the basic principles of Raman spectroscopy and its advantages in studying biological samples.
 - (B) Illustrate the use of magnetic resonance imaging (MRI) in biomedical research and diagnostics.

SECTION-B

- (A) Describe the principle of Phase Contrast Microscopy and its advantages over Bright Field Microscopy in live cell imaging.
 - (B) Explain the working of Fluorescent Microscopy and its applications.
- (A) Discuss the differences between Scanning and Transmission Electron Microscopy in terms of their imaging techniques and applications.
 - (B) Explain the principle of centrifugation and describe the applications of ultracentrifugation in biomolecular separation.

6

SECTION—C

6.	(A)	Explain the physical basis of crystal formation and the process	S
		of mounting crystals for analysis.	7
	(B)	Describe Bragg's Law and its significance in X-ray diffraction	n
		studies for determining crystal structures.	6
7.	(A)	Discuss High-Performance Liquid Chromatography (HPLC	')
		and its importance in the purification of biomolecules.	7
	(B)	Write the principle and instrumentation of Ga	ıs
		Chromatography (GC).	6
		SECTION—D	
8.	(A)	Explain the use of radiotracers in biological studies an	d
		describe the principle of scintillation counting.	7
	(B)	Discuss the principle and applications of Mass Spectrometr	. 7
		in protein identification and characterization.	6
9.	(A)	Describe the principle of Gas Chromatography-Mas	SS
		Spectrometry (GC-MS) and its application in Biologic	a
		science.	7
	(B)	Explain the role of Geiger-Müller (GM) counter in radiation)[
		detection and measurement.	6