(i)	Printed Pages: 3	Roll No	•••••	•••••	•••••	••••
(ii)	Questions : 9	Sub. Code:	3	7	1	(
		Exam. Code:	0	4	7	3
	M.Sc. P	hysics 2 nd Semester				
		(2054)				
	STATIST	ICALMECHANICS				
	Pap	oer: PHY-8022		•		
Tip	ne Allowed : Three Hou	rs] [Maxir	num	Mai	rks:	80
No	te:— Attempt five que each from Units I	estions in all, selecting to IV. Unit-V is compu	_	_		
		UNIT—I		*		

What is phase space of a classical system? Define density 1. (a) function. State and prove Liouville's theorem. What is its importance? Discuss Gibbs Paradox. How is it resolved? (b) 8 Derive a relation to show that the volume of phase-space per 2. (a) Eigen state for a 1-Dimensional harmonic oscillator is asymptotically equivalent to Planck's constant. 8 State the law of Equipartition of energy. (b) 8

UNIT-II

- (a) Define a canonical ensemble and its partition function. Explain energy fluctuations in canonical ensembles.
 - (b) What is grand canonical Ensembles? Write partition function for the grand canonical ensembles. Use it to calculate the thermodynamical quantities-Entropy, internal energy and chemical potential per particle of a monoatomic perfect gas.
- (a) Discuss the energy fluctuations in Grand canonical ensemble and show that it is more than its corresponding value in a canonical ensemble.
 - (b) Derive an expression for the entropy of a system in Grand canonical ensemble and show that S=kσ.
 8

UNIT—III

- (a) Derive the equation of state for an ideal Bose gas. Determine
 the conditions for the appearance of Bose-Einstein
 condensation.
 - (b) Define Fermi energy. Calculate zero point energy of Fermi gas and show that it is purely due to a quantum effect. 8
- 6. (a) Discuss the thermodynamic behaviour of an ideal Bose gas.
 - (b) Define the mean thermal wave length of a particle and show that in the limit of T→0, Fermi gas follows the third law of thermodynamics.
 8

UNIT-IV

- 7. (a) Discuss the Einstien Smoluchowski theory of Brownian particles initially concentrated at the origin diffuses out as the time progresses.
 - (b) Discuss the Ising and Heisenberg Model of interaction energy of Lattice.
- 8. (a) Describe the 1st order and 2nd order phase Transition. Compare these by giving example of each.
 - (b) What do you mean by fluctuations? Explain with example. Hence find an expression for the probability of fluctuations of particle in two halves of a box from most probable distribution.

UNIT-V

- 9. (a) What is a classical ideal gas?
 - (b) Define degeneracy discriminant. Calculate its value for Hydrogen gas.
 - (c) Define critical opalescence. What are the conditions leading to it?
 - (d) In the context of white dwarf star, what is Chandrashekhar limit and how it is related to the mass of the Sun?
 - (e) What is thermodynamic limit? Explain its importance.
 - (f) Establish equivalence of canonical and grand canonical ensembles.
 - (g) Obtain Virial theorem using the law of equipartition of energy.
 - (h) Discuss that the chemical potential of an ideal Bose gas is always negative. $8\times2=16$