(i)	Printed Pag	es: 3	Roll No				
(ii)	Questions	• 0	Sub Code:	3	7	2	4
()	Questions	. ,	Evam Code:	0	4	7	5

M.Sc. Physics 4th Semester (2054)

NUCLEAR PHYSICS—II Paper: PHY-8044

Time Allowed: Three Hours] [Maximum Marks: 80

Note:— Attempt **five** questions in all, selecting **one** question each from Units I to IV. Unit-V is compulsory to attempt.

UNIT-I

- (a) Define Racah coefficient and state its symmetry properties.
 How is it related to 6-j Symbol?
 - (b) Determine harmonic oscillator frequencies 'ω' appropriate to the nuclei ¹⁷O and ⁶⁰Ni. Also write the shell configurations for ₃₀Zn⁶⁷ and ₄₃Tc⁹⁹.
- (a) Prove that energy shift due to spin-orbit potential in the shell model increases with 1-values. Also describe the success and failure of this model.
 - (b) Calculate the coupled state and corresponding C.G coefficients for two particles with $J_1 = J_2 = 1/2$.

UNIT-II

- (a) Describe the parameterization of nuclear surface. How
 the quadrupole deformation is represented in different
 co-ordinate system? For quadrupole deformation, describe
 muclear shapes in principle axis system as a function of γ for
 a fixed β.
 - (b) Define Rotation Matrix and explain how the Rotation about an arbitrary axis 'X' can be expressed in terms of Euler angles of rotation.
 - (a) What is nuclear Rotational motion? Derive Rotational energy spectra and nuclear wave function for even-2 nuclei.
 - (b) Prove that the energies of nuclear vibrational level with one-phonon (λ =3) is equal to the energy of two-phonon with (λ =2)

UNIT-III

- (a) What are stripping and pick up reactions? Give example.
 Obtain a relation for the pick-up cross-section in terms of relative momenta of incoming and outgoing particles.
 8
 - (b) What is the basis of optical Model used in heavy ion fusion?
- 6. (a) Explain, why one needs statistical theory for compound nuclei.
 Discuss Statistical Model for the theory of compound nucleus and derive the evaporation probability and cross-section for a specific reaction.
- (b) Explain Breit-Wigner Resonance Dispersion formula. 8
 3724/PC-23058
 2

UNIT-IV

- 7. (a) Explain the features of Nilsson-Model and obtain the deformed Hamiltonian for the same. How it differs from shell-model?
 - (b) Explain the kinematics and dynamical moment of inertia. 8
- 8. (a) Explain and derive the Cranking Shell Model and give its salient features. Compare this model with Nilisson model.
 - (b) Explain the phenomenon of Back-Bending.

UNIT-V

- 9. (a) Define and explain Seniority quantum number.
 - (b) Write a note on configuration mixing.
 - (c) Write a short note on electric quadrupole moment.
 - (d) What do mean by Nuclear halos?
 - (e) What is iso-scalar vibrations?
 - (f) What is the difference between vibrational and rotational nucleus?
 - (g) What are "Giant resonances"?
 - (h) What are nuclear shock waves? $8\times2=16$

8