(i) Printed Pages: 3 Roll No.

(ii) Questions :9 Sub. Code : 3 7 2 6 Exam. Code : 0 4 7 5

M.Sc. Physics 4th Semester (2054)

CONDENSED MATTER PHYSICS-II

Paper: PHY-8046

Time Allowed: Three Hours] [Maximum Marks: 80

Note:—Attempt FIVE questions in all selecting ONE question each from Units I to IV. Unit V is compulory.

UNIT-I

- 1. (a) What is photo conductivity? Show that: The response time is directly proportional to the photo conductivity for a given illumination level.
 - (b) What are excitons? How will you differentiate between Frankel excitons and weakly bound excitons?
- 2. (a) How can piezo electricity and ferroelectricity be explained on the basis of optical absorption?
 - (b) Derive an expression for dielectric constant of a free electron Fermi gas. How will you relate the plasma mode to dielectric constant?

UNIT—II

3. (a) Prove that Vanvleck paramagnetic susceptibility is independent of temperature.

- (b) Derive an expression for susceptibility of Pauli paramagnetism. Show your predictions graphically. 8
- (a) On the basis of two sublattice model, deduce the expression for the susceptibility of antiferromagnetic material above and below the neel temperature. 10
 - (b) Explain the Heisenberg's exchange interaction in ferromagnetism. Relate the exchange integral to the Weiss constant and Curie temperature.

UNIT—III

- 5. (a) Describe Meissner effect and distinguish between type I and type II superconductors.
 - (b) What is the superconducting tunneling? Explain the V-I characteristics of the d.c. Josephson effect. 8
- 6. (a) Derive London equations on the basis of superconductivity. Find an expression for penetration depth.
 - (b) Give an elementary treatment of BCS theory of superconductivity. How does it explain the energy gap at 0K and isotope effect?

UNIT-IV

- 7. (a) Discuss the various types of dislocations and importance of Burgers vector \vec{b} for them. Calcualte the energy associated with it.
 - (b) Explain briefly:
 - (i) Extrinsic vacancies
 - (ii) Jump frequency of insterstial atom.
 - (iii) Colour Centre.

6

8.	(a) What are surface imperfections? Discuss stacking f	aults
	in:	
	(i) FCC crystals	
	(ii) LCP crystals.	8
	(b) What are the liquid crystals? Discuss the structur	e and
	properties of Nematic liquid crystals.	8
	UNIT-V	
9.	(a) Is there any difference among the alloying and	solid
٦.	solution?	2
	(b) Write down the relation between refractive inde-	x and 2
	polarizability.	? 2
	(c) Is luminescence the inverse of optical absorption	2
	(d) What are spin waves and their quantisation?	
	(e) Is anisotropic energy an important tool in deciding magnetic properties of solids?	ng the
	(f) Find the ratio of nuclear and Bohr magneton.	2
	the courses of superconductivity?	2
	and the most temperature?	2
	(h) What is the neer temperature.	