(i) Printed Pages: 2
(ii) Questions :8 Sub. Code : 1 7 4 4 4
Exam. Code: 0 0 5
B.A./B.Sc. (General) 5th Semester
(2124)
MATHEMATICS
Paper-II : Modern Algebra
Time Allowed: Three Hours] [Maximum Marks: 30
Note:—Attempt FIVE questions in all by selecting at least TWO from each section.
SECTION—A
1. (a) If G is a group, then the equations $ax = b$ and $ya = b$
have unique solution in G

1.	(a)	If G is a group, then the equations $ax = b$ and $ya = b$	= b
		have unique solution in G.	3
	(b)	Show that if G is a group and $a^2 = e \lor a \in G$ then	G
		is abelian.	3
2.	(a)	State and prove Lagrange's theorem on groups.	3
	(b)	Prove that if H and K are subgroups of a group G th	ien
		$H \cap K$ is also a subgroup of G.	3
3.	(a)	If G is a finite group of prime order then G is cycl	lic.
			3
	(b)	Show that A ₄ has no subgroup of order six.	3

- (a) Prove that every finite cyclic group of order n is isomorphic to Z/nZ.
 - (b) A group homomorphism f: G → G' is monomorphism iff ker f = {e}.

SECTION-B

- 5. (a) Prove that a finite non-zero integral domain is a field.
 - (b) Prove that a ring R is commutative iff
 (a + b)² = a² + 2ab + b² y a, b ∈ R
- 6. (a) If I and J are ideals of a ring R then I ∩ J is also an ideal of R.
 - (b) Show that a division ring has no proper ideal. 3
- 7. (a) Find all units of $Z_7[x]$.
 - (b) Show that uZ is a maximal ideal of 2Z.
- 8. An ideal P of a commutative ring R is prime if and only if R/P is an integral domain.