(i) Pr	inted Pages : 3 Roll No	•••
(ii) Qu	sestions : 7 Sub. Code: 1 7 4 4 8	3
		5
	B.A./B.Sc. (General) 5th Semester	
	(2124)	
	PHYSICS	
	Paper: A Condensed Matter Physics—I	
Time Al	lowed: Three Hours] [Maximum Marks: 4	4
Note :-	- Attempt five questions in all, including Q. No. 7 (Section-Countries which is compulsory and selecting two questions each from Section-A and Section-B.	
84 - 2 IN	SECTION—A	
1. (a)	Explain Miller indices. Find the expression for separation between planes in terms of Miller indices.	
(b)	Calculate the density of Copper in its FCC structure. Give	
	radius of Cu atom = 1.278 Å and atomic weight of Cu	
	63.54 g.	
2. (a)	Derive geometrical structure factor. How is it related to	0
	atomic scattering factor?	
(b)	Bragg's reflection at (111) planes of a crystal is observed	d
h	at an angle of 60° in the first order. Find the value o	
	interplanar spacing, given $\lambda_{x-ray} = 1.8 \text{ Å}$.	

- (a) Explain the crystal structure of NaCl (sodium chloride).
 Draw a sketch of sodium chloride lattice and write down the coordinates of the atoms and number of sodium ions in a unit cell of NaCl.
 - (b) What do you men by reciprocal lattice? Show that reciprocal lattice to a body centered cubic (BCC) lattice is FCC lattice.

SECTION—B

- (a) Obtain an expression for the Fermi energy, total energy and density of states for a free electron gas in one dimension.
 Also show the variation of density of states with energy.
 6
 - (b) Obtain the value for the Fermi energy of a free electron in lithium at absolute zero temperature. Given atomic weight of Li = 6.939 a.m.u. Density of Li = 534 kg/m³.
- 5. (a) What is an extrinsic semiconductor? Discuss the variation of the Fermi level with temperature for an n-type semiconductor.
 - (b) Explain the phenomena of Hall Effect and obtain an expression for Hall coefficient.
- Discuss Kronig-Penny model for electron energy in solids and show how it explains forbidden bands.

SECTION—C

- 7. Attempt any eight parts of the following:—
 - (i) State Bloch theorem.
 - (ii) What is Hall Effect?
 - (iii) Define packing fraction. What is packing fraction for BCC?
 - (iv) State Wiedemann-Franz law.
 - (v) Give diffraction condition for reciprocal lattice.
 - (vi) Define relaxation time.
 - (vii) What is the reason for failure of free electron theory?
 - (viii) What is Fermi gas?
 - (ix) What are extrinsic semiconductors?
 - (x) n-type or p-type semiconductors are electrically neutral.Explain. 8×1=8