(i) Printed Pages: 3 Roll No
(ii) Questions : 9 Sub. Code : 1 7 4 5 3
Exam. Code: 0 0 5
B.A./B.Sc.(General) 5th Semester (2124) CHEMISTRY
(Same for B.Sc. Microbial & Food Technology)
Paper :XIX Physical Chemistry-A
Time Allowed: Three Hours] [Maximum Marks: 22
Note:—(1) Attempt <i>five</i> questions in all, selecting <i>one</i> question each from Units I, II, III and IV and Q. No. 9 is compulsory.
(2) Use of log tables and simple calculator is allowed.
UNIT—I
 (a) What is the concept of particle in one-dimensional box? What is the Schrodinger wave equation for such a case? How can this equation be solved for Ψ and E?
(b) What is an operator? When are the operators said to commute? Explain with an example that the operators usually do not commute. What is the commutator of the
two operators and B? What is its value when the operators commute?
2. (a) What is Planck's radiation law? How do Wien's law and Rayleigh Jean's law follow from it?
(b) Applying de Broglie relationship, derive Schrodinger wave
equation. 2

UNIT-II

- 3. (a) What are the criteria or the conditions for the formation of molecular orbitals from atomic orbitals?
 - (b) What do you understand by Linear Combination of Atomic Orbitals (LCAO)? How can it be applied to H₂⁺ ion to calculate its energy? Comment on the values of the energy obtained.
- 4. (a) Derive the values of the coefficients of atomic orbitals in the three sp² hybrid orbitals.
 - (b) Discuss the application of LCAO-MO method to the study of H₂ molecule. Compare the results obtained with the experimental values.
 2

UNIT—III

- 5. (a) How do photochemical reactions differ from thermal reactions? Give at least four differences.
 - (b) Discuss the Lambert's law and Beer's law. Is Beer's law applicable in the case of concentrated solution of light absorbing substances?
- 6. (a) Derive the relationship between Einstein (in calories) and the wavelength of the radiation (in angstrom units). 2
 - (b) Draw Jablonski diagram. Depict the non-radiative (radiationless) and radiative transitions, internal conversion and inter system crossing, fluorescence and phosphorescence.

UNIT-IV

7.	(a)	Explain the term "Photosensitization" with at least thr	ee
		examples about their mechanism.	2
	(b)	What do you mean by quantum yield of a photochemic	
		reaction? Explain why photosynthesis of HCl has ve	
		high quantum yield while that of photosynthesis of HBr	is
_		very low.	2
8.	(a)	What is the absorption coefficient of a solute which absor	bs
		90% of a certain wavelength of light beam passed throu	gh
		1 cm cell containing 0.25 M solution?	2
	(b)	What is meant by primary and secondary processes	in
		photochemistry? Explain with the help of an example.	2
		(Compulsory Question)	
9.	(a)	What do Hamiltonian operator stand for ?	1
	(b)	State and explain Heisenberg's uncertainty principle.	1
	(c)	Compare the important characteristics of σ and π molecular	ılar
		orbitals.	1
	(d)	Write expression for Compton shift and explain the resu	ılts
		obtained for scattering angles of 0°, 90° and 180°.	1
	(e)	What is resonance fluorescence? Give one example.	1
	(f)	Write a short note on 'Chemiluminescence'.	1