(i) Printed Pages: 3

Roll No.

(ii) Questions

:8 Sub. Code:

1 7 2 4 1

Exam. Code:

0 0 0 3

B.A./B.Sc. (General) 3rd Semester (2124)

MATHEMATICS

Paper-I (Advanced Calculus-I)

Time Allowed: Three Hours

[Maximum Marks: 30

Note:—Attempt FIVE questions in all, selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

1. (a) By using definition, prove that:

$$\lim_{(x, y) \to (1, 2)} (x^2 + y^2) = 5.$$

(b) Show that the function defined by:

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} &, (x, y) \neq (0, 0) \\ 0 &, (x, y) = (0, 0) \end{cases}$$

is continuous at (0, 0).

3

2. Let
$$f(x, y) = xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right)$$
, where $(x, y) \neq (0, 0)$ and

$$f(0, 0) = 0$$
. Show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

6

- 3. (a) If $x^y + y^x = (x + y)^{x+y}$, then by using partial derivatives, find $\frac{dy}{dx}$.
 - (b) If $z = x^3 xy + y^3$ and $x = r \cos \theta$, $y = r \sin \theta$, find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.
- 4. (a) If $\vec{r} = t^3 \hat{i} + (2t^3 \frac{1}{5t^2})\hat{j}$ then show that $\vec{r} \times \frac{d\vec{r}}{dt} = \hat{k}$. 3
 - (b) For $\phi = x^2y^3z^4$, find the directional derivative of ϕ at (2, 3, 1) in the direction making equal angles with x, y and z-axis.

SECTION-B

5. (a) If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$ then prove that :

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u.$$

- (b) Use Taylor's theorem to expand $x^2y + 3y 2$ in powers of (x 1) and (y + 2).
- 6. (a) If $f(x, y) = \left(\sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x}\right), x \neq 0$ then evaluate $J_f(1, 2)$.
 - (b) If f(0) = 0 and $f'(x) = \frac{1}{1 + x^2}$, prove without using method

of integration, that
$$f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$$
.

- 7. (a) Find the envelope of the family of circles $(x \alpha)^2 + y^2 = 4\alpha$; α being the parameter.
 - (b) Find the centre of curvature at any point (x, y) of the parabola $y^2 = 4ax$. Also find its evolute.
- 8. Find all the points of maxima and minima of the function $f(x, y) = x^3 + y^3 63(x + y) + 12xy$. Also discuss the saddle points (if any) of the function.