(i)	Pr	rinted Pages : 2 Roll No	
(ii)			
	ζ.		븏
		Exam. Code: 0 0 0	3
		B.A./B.Sc. (General) 3rd Semester	
		(2124)	
		MATHEMATICS	
		Paper—II: Differential Equations-I	
Tin	1e Al	llowed : Three Hours] [Maximum Marks	: 30
Not	e :	-Attempt FIVE questions in all by selecting at TWO questions from each Unit.	least
		UNIT—I	
1.	(a)	, -	
e		are homogenous functions of same degree in x and y	then
		show that $\frac{1}{Mx + Ny}$ is I-F, where $Mx + Ny \neq 0$.	3
	(b)	Solve $(x^2 + y^2 + 2x) dx + 2y dy = 0$.	3
2.	(a)	Solve $y - 2px = tan^{-1}(xp^2)$	3
	(b)	Find Singular solution of $(xp - y)^2 = p^2 - 1$.	3
3.	(a)	Find Orthogonal trajectories of family of paral	olas
		$y = ax^2.$	3
	(b)	Solve $(D^3 + 1)$ y = cos 2x.	3
4.	(a)	Solve $(D^2 + 1) y = xe^{2x}$.	3
N. S. S.	(b)	Solve $(D^2 - 3D + 2) y = \sin(e^{-x})$	3

UNIT—II

- 5. (a) Solve $\{x^2D^2 + 4xD + 2\}y = e^x, x > 0$
 - (b) Solve $\{(2x-1)^3D^3 + (2x-1)D 2\}y = 0$
- 6. (a) Using variation of parameters solve (D_2+1) y = tan x.
 - (b) Solve $(D^2 + a^2) y = \sec ax$ by reduction of order. 3
- 7. Solve $x^2 \frac{d^2y}{dx^2} (x^2 + 2x) \frac{dy}{dx} + (x + 2)y = x^3 e^x$, by changing the dependent variable.
- 8. (a) Solve $\frac{dx}{dt} = 3x y$ and $\frac{dy}{dt} = 4x y$
 - (b) Solve $(1 + x^2) \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = 0$