10/12/2024 (E)

(i) Printed Pages: 4 Roll No.

(ii) Questions :9 Sub. Code: 1 7 2 5 2 Exam. Code: 0 0 0 3

B.A./B.Sc. (General) 3rd Semester (2124)

CHEMISTRY

Paper—XI: (Physical Chemistry-A)

(Same for B.Sc. Microbial & Food Technology)

Time Allowed: Three Hours] [Maximum Marks: 22

- Note:—(1) The students are required to attempt FIVE questions in all, ONE question from each Section and the compulsory question.
 - (2) Compulsory question carries 6 marks and remaining all questions carry 4 marks each.

SECTION-A

- (a) What are Intermolecular Forces? Briefly describe the three types of Intermolecular Forces. Give one example of each type.
 - (b) Describe the application of Liquid Crystals in Electronic Industry. What types of Liquid Crystals are used?
- (a) What are Liquid Crystals? Briefly describe the different types of Liquid Crystals.
 - (b) Write a short note on "Thermography".

SECTION—B

3. (a) Write expressions for equilibrium constant (in terms of K_p and K_c) for the following reactions:

(i)
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(ii)
$$PCl_5(g) \iff PCl_3(g) + Cl_2(g)$$

- (b) In a reaction between H₂ and I₂ at a certain temperature, the amounts of H₂, I₂ and HI at equilibrium were found to be 0.45 mole, 0.39 mole and 3.0 moles respectively. Calculate the equilibrium constant for the reaction at the given temperature.
- (a) With the help of Le-Chatelier Principle, explain the effect of temperature and pressure on the solubility of gases in liquids.
 - (b) The value of equilibrium constant K_p for the reaction N₂O₄

 2NO₂ at 25 °C is 0.14. Calculate standard free energy change ΔG° for the reaction.

SECTION—C

- 5. (a) Derive an expression for the calculation of the entropy change of an ideal gas when the temperature changes from T₁ to T₂ and volume changes from V₁ to V₂.
 - (b) Calculate the maximum efficiency of a steam engine operating between 110°C and 25°C. What would be the efficiency of the engine if the boiler temperature is raised to 140°C, the temperature of the sink remaining same?

- 6. (a) Derive an expression for entropy change on mixing of ideal gases. From the expression, explain the effect of temperature on entropy change of mixing.
 - (b) Calculate the entropy change when one mole of hydrogen is mixed with two moles of oxygen at room temperature, assuming that the gases behave ideally.

SECTION—D

- 7. (a) State 'Third Law of Thermodynamics'. How does this law help in determination of absolute entropies of chemical compounds at any desired temperature?
 - (b) Derive thermodynamically the relationships:

$$\Delta G = RT \ln \frac{P_2}{P_1} = RT \ln \frac{V_1}{V_2}$$

- 8. (a) What is residual entropy? How the concept of residual entropy originated? How can it be calculated?
 - (b) Prove that:

$$\left(\frac{\partial U}{\partial S}\right)_{V} = T \text{ and } \left(\frac{\partial U}{\partial V}\right)_{S} = -P.$$

SECTION—E (Compulsory)

- 9. (a) Define Nemectic Liquid Crystals. Give one example.
 - (b) State Law of Mass Action.
 - (c) What are the limitations of first law of Thermodynamics and why there is need of second law of Thermodynamics?

- (d) What is the significance of work function and Gibb's free energy?
- (e) State Le-Chatelier's Principle. What is the effect of addition of inert gas at the Equilibrium?
- (f) State Carnot Theorem.