(i)	Printed Pages: 3 Roll No.
(ii)	Questions :9 Sub. Code: 2 6 0 4 4
	Exam. Code: 0 4 6 1
	M.Sc. Information Technology 3 rd Semester (2124)
	THEORY OF COMPUTATION
	Paper: MS-69
Tim	e Allowed: Three Hours] [Maximum Marks: 80
	:—Attempt five questions in all. Q. No. 9 (Section E) is compulsory and selecting one question each from Sections A to D.
	SECTION—A
1.	(i) Define each type of Grammar as Type-0, 1, 2 and 3. 8
	(ii) Design DFA for a string over {0,1} that accept even number of 1's and even number of 0's. 8
2.	(i) Design Moore and Mealy machines to generate 1's complement of given binary number.
	(ii) Write short notes on deterministic and non-deterministic
5 27 \	finite machines.
	SECTION—B
3.	(i) Give an example that convert NFA to DFA. 8
	For the regular language L_1 and L_2 , show that $L_1 \cup L_2$ and
	(ii) For the regular. $L_1 \cap L_2 \text{ are regular.}$
	Turn over

Construct regular expression for the given DFA: $\delta (q_1, 0) = q_1, \delta (q_1, 1) = q_2, \delta (q_2, 0) = q_3, \delta (q_2, 1)$ = q_2 , δ (q_3 , 0) = q_3 , δ (q_3 , 1) = q_3 for ({ q_1 , q_2 , q_3 }, $\{0, 1\}, \delta, q_1, \{q_2\}\}$. 8 Discuss equivalence of two finite automata using suitable (ii)example.

8

SECTION—C

- 5. Construct a PDA that accepts the language generated by **(i)** grammar with productions $S \rightarrow aSbb \mid a$. 8
 - Define Chomsky and Greibach normal forms. (ii) 8
 - 6. (i) The CFG ($\{S, A, B, C\}, \{a, b\}, P, S$), where P is $S \rightarrow$ AB | BC, $A \rightarrow BA$ | a, $B \rightarrow CC|b$, $C \rightarrow AB$ | a. Using CYK, is $w \in L$ ture or not? where w = "baaba". 10
 - Differentiate between deterministic and non-deterministic (ii)pda. 6

SECTION—D

- Construct a Turing machine to multiply two numbers. 8 7. (i)
 - Write short notes on universal turing machine and post (ii) machine. 8
- Construct a TM for checking the palindrome of the string (i) 8. of odd length. 8
 - Write short notes on LR (K). (ii)

8

SECTION—E

(Compulsory Question)

- 9. (i) Write short note on Chomsky hierarchy of languages.
 - (ii) What are limitations of finite state machine?
 - (iii) Discuss use of parser design.
 - (iv) What is halting problem?

4×4=16