(i) Printed Pages: 4 Roll No. .....

(ii) Questions :9 Sub. Code : 2 6 1 0 1 Exam. Code : 0 4 7 2

M.Sc. Physics 1<sup>st</sup> Semester (2124)

## MATHEMATICAL PHYSICS—I

Paper: PHY-8011

Time Allowed: Three Hours] [Maximum Marks: 60

Note:—(1) Attempt FIVE questions in all, taking ONE question each from Units I to IV.

(2) Unit-V is compulsory.

#### UNIT—I

- (a) Assuming that f(z) is analytic on and with in the closed contour C, obtain an expression for the n<sup>th</sup> derivative f<sup>(n)</sup>(z<sub>0</sub>) of f(z) at z<sub>0</sub>.
  - (b) Using the calculus of residues, show that :

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} \, dx = \frac{\pi}{a} e^{-a} \, .$$
 5

- (c) Find the analytic function f(z) = u(x, y) + iv(x, y) if  $u(x, y) = x^3 3xy^2$ .
- 2. (a) If f(z) is a regular function of z, prove that:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(x)|^2 = 4 |f'(x)|^2.$$

(b) Show that the integral:

$$\int_{-\infty}^{\infty} \frac{\cos bx - \cos ax}{x^2} dx \ a > b > 0 = \pi(a - b).$$

(c) Evaluate 
$$\oint_C \frac{\sin^2 z \, dz}{(z-a)^4}$$
.

#### UNIT—II

- 3. (a) Find relation between beta and gamma function. 4
  - (b) Define Dirac delta function. Show that the sequence  $\delta_n(x)$  based on the function  $\delta_n(x) = 0$ , x < 0 and

$$\delta_n(x) = \frac{ne^{-n^2x^2}}{\sqrt{\pi}}, x > 0$$
 is a delta sequence.

(c) Show that for integer s, 
$$\int_{0}^{\infty} x^{2s+1} e^{-ax^{2}} dx = \frac{s!}{2a^{s+1}}$$
.

4. (a) Obtain Legendre duplication formula:

$$\Gamma(2m) = 2^{2m-1}(\pi)^{\frac{-1}{2}} \Gamma(m) \Gamma\left(m + \frac{1}{2}\right).$$

(b) Prove that:

$$\delta(x^2 - a^2) = \frac{1}{2a} [\delta(x - a) + \delta(x + a)], a > 0.$$

(c) Evaluate  $\int_{-1}^{+1} (1+x)^a (1-x)^b dx$  in terms of beta function.

#### UNIT-III

5. (a) Solve the Bessel differential equation:

$$x^2y''(x) + xy'(x) + (x^2 - n^2) y(x) = 0$$
  
using Frobenius method. Are the two solutions independent?  
Discuss.

- (b) Using the method of separation of variables, solve Laplace equation in spherical polar co-ordinates. 6
- 6. (a) Determine the steady state temperature distribution in thin plate boundary by the lines x = 0, x = 1, y = 0 and y = ∞; assuming that heat can't escape from either surface of the plate, the edges x = 0, x = 1, y = ∞, being kept at steady temperature F(x).
  - (b) Find the eigen values and normalized eigen vectors of the following matrix:

$$\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}.$$

#### UNIT—IV

7. (a) Show that the orthonormal property of Hermite polynomial is:

$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = 2^n n! \sqrt{\pi} \delta_{mn}.$$

(b) Obtain the Rodrigue's formula for Legendre polynomials. Hence find  $P_3(x)$ .

8. (a) Deduce that 
$$\int_{0}^{\infty} e^{-x} L_{m}(x) L_{n}(x) dx = \delta_{m,n}.$$

(b) Show that when n is an integer:

$$J_{n}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(n\theta - x \sin \theta) d\theta.$$
 6

### UNIT-V

# (Compulsory Question)

- 9. (a) Show that :  $xJ'_n(x) = -nJ_n(x) + xJ_{n-1}(x)$ .
  - (b) Explain dispersion relations of complex functions.
  - (c) Evaluate  $\oint_C \frac{dz}{z(2z+1)}$  for the contour the unit circle.
  - (d) Prove that  $\delta'(x) = \frac{-1}{x x_0} \delta(x x_0)$ .
  - (e) Give the physical meaning of divergence of a vector.
  - (f) If A and B are idempotent matrices, then A + B will be idempotent if and only if AB = BA = 0.

 $6 \times 2 = 12$