(i)	Pri	nted Pages: 3 Roll No	••
(ii)	Qu	estions : 9 Sub. Code : 2 6 1 0 9	
		Exam. Code: 0 4 7 4	ij
M.Sc. Physics 3 rd Semester (2124) NUCLEAR PHYSICS—I Paper: PHY-8031			
Time Allowed: Three Hours] [Maximum Marks: 60			
Note:—Attempt FIVE questions in all, selecting ONE question each from Units I to IV. Unit V is compulsory.			
		UNIT—I	
1.	(a)	What are different types of electromagnetic methods to determine the nuclear radius? Describe the mirror nucl method.	
	(b)	Define electric quadrupole moment associated with nucl and derive its expression for ellipsoidal shapes.	lei 6
2.	(a)	and derive the expression for total even	7
	(b)	The Quadrupole moment for ¹⁵⁵ ₆₄ Gd is 130 Fm ² . Sho that ¹⁵⁵ Gd nucleus is almost spherical.	w 5
		UNIT—II	
3.	(a)	Discuss the Fermi theory of β-decay in detail.	6
	(b)	- Cione Nuttal law	3
	(c)	Explain in brief the helicity of neutrino.	3

- (a) Explain Co-60 experiment to discuss the parity nonconservation in β-decay.
 - (b) Discuss the Gammow's theory of alpha decay in detail.

UNIT—III

- 5. (a) Prove that no bound state exist for excited state of deuteron.
 - (b) Show that for a square well of depth V₀ and range b, the scattering length 'a' for a spinless neutron is given by the relation :

K cot kb =
$$(b - a)^{-1}$$
, where $K = \frac{(MV_0)^{1/2}}{\hbar}$.

- (c) Give a brief description of exchange forces. 3
- 6. (a) Show that the cross-section for orthohydrogen is greater than the cross-section of para hydrogen.
 - (b) Show that in n-p scattering at low energy below 10 MeV, 's' wave is predominant.

UNIT-IV

- 7. (a) Describe the neutron cycle in a thermal nuclear reactor.

 Also obtain four factor formula.
 - (b) Draw and explain the mass and energy distribution of fission fragments of U²³⁵.

- 8. (a) Briefly explain the accelerator based sources for the production of neutron.
 - (b) Explain slowing down power and moderating ratio of neutrons.
 - (c) Write a note on spontaneous fission.

UNIT-V

- 9. (a) Define and explain thick target yield.
 - (b) List three properties of good moderator.
 - (c) Draw a Kurie plot in nuclear β-decay.
 - (d) Define laboratory and centre of mass co-ordinate.
 - (e) Define scattering length.
 - (f) What do you mean by allowed and forbidden transitions in β -decay? $6\times2=12$

2