(i) Printed Pages: 3 Roll No.

(ii) Questions :7 Sub. Code: 1 0 0 7 2 Exam. Code: 5 0 0 1

Bachelor of Arts (FYUP) 1st Semester (2124)

MATHEMATICS

Paper: Basic Mathematics-I MATIDC

Time Allowed: Three Hours] [Maximum Marks: 68

Note: Do FOUR questions in all, including question number 1, and by selecting ONE question from each of the three Units.

- (a) Let A = {3, 4, 6, 8} and B = {3, 5, 7} be two subsets of a universal set U = {3, 4, 5, 6, 7, 8, 9}, verify (A∪B)^c=A^c∩B^c.
 - (b) Does the relation R: {(1, 2), (2, 3), (4, 5), (2, 1), (3, 5)} form a function? Write down domain and range of the relation R.
 - (c) Solve the inequality $\frac{1}{1-x} > 2$ for all real values of x.
 - (d) Find the value of x, if det. $\begin{bmatrix} 2 & 4 \\ 5 & 1 \end{bmatrix} = \det \begin{bmatrix} 2x & 4 \\ 6 & x \end{bmatrix}$
 - (e) Given 4 flags of different colours, how many different signals can be generated, if a signal requires the use of 2 flags one below the other?

- How many eight digit numbers can be formed if all the (f) digits are different?
- Calculate mean deviation about the median from the following (g) data: 340, 150, 210, 240, 300, 310, 320.

 $2 \times 7 = 14$

UNIT-I

- Let a function $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be 2. (a) described by a formula f(x) = ax + b for some integers a and b. Determine a and b.
 - By using principal of mathematical induction show that the (b) statement P(n): $1+2^2+3^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ is $9 \times 2 = 18$ true for all $n \in N$.
- Express the matrix $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a 3. symmetric and a skew symmetric matrix.
 - (b) If $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ then show that $A^2 4A + 7I = 0$ and by using this equation calculate A5. $9 \times 2 = 18$

UNIT—II

(a) Without expanding the determinants show that 4.

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ yz & zx & xy \\ x & y & z \end{vmatrix} = 0$$

Find inverse of the matrix $A = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 1 & 4 & 3 \end{bmatrix}$

5. (a) Calculate mean deviation from mean from the following data:

$$x_i$$
: 3 9 17 23 27 f_i : 8 10 12 9 5

(b) Calculate variance and standard deviation from the following data:

$$x_i$$
: 2 4 6 8 10 12 14 16
 f_i : 4 4 5 15 8 5 4 5
 $9 \times 2 = 18$

UNIT—III

- 6. (a) Solve the inequality $\frac{x-2}{x+5} > 2$.
 - (b) Solve the inequality $6 \le -3 (2x 4) < 12$ graphically. $9 \times 2 = 18$
- 7. (a) Find middle term(s) in the expansion of $(2x + 3y)^5$.
 - (b) Show that $C_r^n + C_{r-1}^n = C_r^{n+1}$, where C_r^n is the number of ways of selecting r objects out of n objects. $9 \times 2 = 18$