(i) Printed Pages: 4 Roll No.

(ii) Questions :9 Sub. Code: 3 7 0 4

Exam. Code: 0 4 7 2

M.Sc. Physics 1st Semester

(2122)

QUANTUM MECHANICS—I

Paper: PHY-8013

Time Allowed: Three Hours] [Maximum Marks: 80

Note:— Attempt **FIVE** questions in all, selecting **ONE** question each from Units-I to IV and the compulsory question from Unit-V.

UNIT-I

- 1. (a) Define quantum system. How does a quantum system evolve in:
 - (i) Heisenberg representation
 - (ii) Schrodinger representation?

Explain in detail.

8

- (b) Explain Gram-Schmidt procedure of orthonormalization in detail.
- 2. (a) Write a note on Eigen Kets, Eigen Bras and Dirac operator approach to quantum mechanics. 8

(b) Show that for operators A, B, C satisfying [A, B] = iC, the following relation holds: $\Delta A \Delta B \ge \frac{1}{2} < C >$, where symbols have their usual meaning.

UNIT—II

- 3. (a) Obtain eigen values of L^2 operator. L is Orbital angular momentum operator.
 - (b) Given $< j'm' \mid J_{\pm} \mid jm > = \sqrt{(j + m)(j \pm m + 1)} \hbar \delta_{jj'} \delta_{m',m \pm 1}$.

 Obtain the matrix representation for J_x operator for spin $\frac{1}{2}$.
- 4. (a) For $\vec{J}_1 = \frac{1}{2}$, $\vec{J}_2 = 1$. $\vec{J} = \vec{J}_1 + \vec{J}_2$. Obtain Clebsch-Gordon coefficients.
 - (b) Using basic commutator $[x_i, p_j] = i\hbar \delta_{ij}$, $\vec{L} = \vec{r} \times \vec{p}$, find the commutators:
 - (i) $[L_x L_z, L_y]$.
 - (ii) $[L_x^2, L_z L_y]$.

UNIT—III

- 5. (a) A one dimensional quantum simple harmonic oscillator is subjected to a perturbation Cx. Find the correction to the energy of the ground state and first excited state.
 - (b) Write a note on variational method.

6.	(a)	Discuss Stark effect in the context of degeneral perturbation theory and find the correction to first two states of hydrogen atom.	ite vo 8
515 ₁ 75	(b)	Derive Schrodinger equation using variational method	od. 8
UNIT—IV			
7.	(a)	Consider the case where perturbation is constant in tin	
		obtain the general expression for the probability transition.	of 8
	(b)	State and explain Fermi Golden rule.	8
8.	(a)	Consider the case where perturbation is harmonic time, obtain the general expression for the probabil of transition.	_
	(b)	Write a note on Einstein coefficients.	8
UNIT—V			
9.	(a)	State properties of Unitary operator, Hermiti operator.	an 2
	(b)	Define Hilbert Space.	2
	(c)	State two postulates of quantum mechanics.	2,
	(d)	What is the relevance of Complete set of commutators?	ing 2
	(e)	What is the necessary condition for applicability perturbation theory?	of 2

- (f) Write down the complete:
 - (i) Symmetric, (ii) Anti-symmetric two identical particle quantum mechanical wave functions.
- (g) In perturbation theory, for the ground state show that the second order correction to energy is always negative.