| (i)  | Printed Pages: 3 | Roll No    | / | ••••• | ••••• | ••••• |
|------|------------------|------------|---|-------|-------|-------|
| (ii) | Questions : 9    | Sub. Code: |   |       |       |       |

Exam. Code: 0 4

M.Sc. Physics 3<sup>rd</sup> Semester (2122)

# CONDENSED MATTER PHYSICS—I

**Paper: PHY-8033** 

Time Allowed: Three Hours] [Maximum Marks: 60

Note: Attempt FIVE questions in all, including Question No. 9 (Unit-V) which is compulsory and selecting ONE question each from Units-I to IV.

### UNIT—I

- 1. (a) Discuss the importance of geometrical structure factor in X-ray diffraction & also explain the reason for some missing planes.
  - (b) Calculate the cohesive energy per atom (ion) in NaCl, if ionisation potential is 5.14 ev & electron affinity of chlorine is 3.61 ev, Madelung constant A 1.7496 & equilibrium separation Re = 2.81Å.
- 2. (a) Derive an expression for elastic energy density. Explain dilation in crystals also.
  - (b) Prove the physics of forbidden gap in diatomic linear chain. Sketch the acoustical & optical branches clearly.

[Turn over

# UNIT-II

- 3. (a) Explain the concept of pseudo-potential method approach in solving the Schrodinger equation. Also give treatment for nearly free electron model.
  - (b) How Bloch theorem is an important tool in understanding the band theory of solids?
- 4. (a) Show the Lorentz number obtained on the basis of quantum theory is equal to  $\frac{\pi^2}{3} \left(\frac{K_b}{e}\right)^2$  where symbols have their usual meaning. Compare this value with one predicted by classical theory.
  - (b) Explain the meaning of effective mass and how it differs from ordinary mass. Prove your result. 5

## UNIT—III

- 5. (a) Derive an expression for two band magneto resistance model and give its importance also.
  - (b) Prove thermoelectric effects from transport theory. 6
- 6. (a) Discuss the minute detail of the following Boltzmann transport equation:

$$\frac{\partial f}{\partial t} + V \cdot \nabla f + F \cdot \nabla_p f = \frac{f - f_0}{\tau}.$$

(b) Discuss the difference between quantum and classical Hall effect. Derive it from transport theory. 5

## UNIT-IV

- 7. (a) What are the various polarizabilities? Discuss the classical theory of electronic polarizability and derive the required dispersion relation.
  - (b) If 10<sup>27</sup> molecules/m<sup>3</sup> of HCl subjected to electric field of 10<sup>6</sup> v/m each with dipole moment 3.46×10<sup>-30</sup> cm. Show that at this temperature and for corresponding value of high field a is small, (a=pE/KT).
- 8. (a) What is piezoelectric effect? Explain the origin of the effect & its applications also.
  - (b) Show that dielectric constant of a ferroelectric should follow the Curie-Weiss law above Curie temperature.

#### UNIT-V

- 9. Short questions:
  - (a) What is the difference between pyroelectric ferrielectric and antiferroelectric substances?
  - (b) Discuss the structure of Brillouin Zones.
  - (c) What is the core correction term in pseudo-potential method?
  - (d) Discuss the various symmetries in energy bands.
  - (e) Explain atomic scattering factor.
  - (f) Discuss the outcome of tight binding approximation.

 $6 \times 2 = 12$