(i)	Printed Pa	ges:3	Roll No	•••••••
(ii)	Questions	:9 S	ub. Code:	3 7 2 0
		Exa	m. Code:	0 4 7 4
		M.Sc. Physics	3 rd Semester	
		(212:	2)	ulter (the
		QUANTUM ME	CHANICS-II	
		Paper : PH	Y-8035	
Tir	ne Allowed: Ti	hree Hours]	[Maxin	num Marks : 60
No	te :— Answer	five questions in	all, selecting or	ne question each
		nits I-IV and the co		
		UNIT-	—I	
1.	(a) From the	e scattering data of	fidentical partic	les, explain how
to the	- /	infer the spin o		
	scattering	5.		6
	(b) Obtain t	he expression for	scattering cros	s section using
		ave analysis.	8	6
2		wave analysis, d	iscuss the featur	res of scattering
۷.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	tion, (i) if only S v		,
	4.33	vaves, are involv		· 55
		ne differential cr	,	
	approxim	nation, in the case	oi a Gaussiaii p	Otelliai.
	V(r) = V	$V_0 e^{-r^2/a^2}$	3.	6
		A		

UNIT-II

	y and the	
3.	(a)	Obtain the non-relativistic limit two component Pauli-
		Schrodinger equation for a Dirac particle starting from
		Dirac equation.
	(b)	Explain the statement that particle satisfying Dirac equation
		has a spin $\frac{1}{2}$ is natural consequence in Dirac theory. 6
4.	(a)	Discuss the features of Dirac equation for a particle in
		central field.
	(b)	Discuss the difficulties in describing the K-G equation for
		relativistic electron and how Dirac resolved them.
	Ç.	UNIT—III
5.	(a)	Write down the Lagrangian for free classical real scalar
		field and obtain Euler-Lagrange field equation for the scalar
10	1.	field.
	(b)	Quantize real scalar field.
6.	(a)	Write down the Lagrangian for free classical Dirac field
		and obtain Euler-Lagrange field equation for the Dirac
		field.

Discuss salient features of second quantization, using an

6

(b)

example.

UNIT—IV

7.	(a)	Quantize free electromagnetic field.	6
	(b)	What are Feynman diagrams? Draw electron-electron-electron diagram/s with all labels.	tron 6
8.	(a)	Quantize Dirac field.	6
	(b)	Write a short note on covariant perturbation theory.	6
		UNIT—V	
9.	(a)	Explain Dirac Sea.	2
	(b)	What is Zitterbewegung?	2
	(c)	Write down the four basis solutions of a free D	irac
		particle.	2
	(d)	What is Lamb shift?	2
	(e)	Define Scattering cross section. What are its units?	2
	(f)	What is a normal ordered product? What is a time ordered	ered
	\' \'\'\'	product?	2