(i) Printed Pages: 3 Roll No.

(ii) Questions :8 Sub. Code : 0 1 4 5 Exam. Code : 0 0 0 2

B.A./B.Sc. (General) 2nd Semester (2042)

MATHEMATICS

Paper: I Solid Geometry

Time Allowed: Three Hours [Maximum Marks: 30

Note:—Attempt five questions in all, selecting at least two questions from each Unit.

UNIT-I

I. (a) Reduce the equation

$$3x^2 - y^2 - z^2 + 6yz - 6x + 6y - 2z - 2 = 0$$

to the form in which the linear terms are absent.

(b) Find the transformed equation of the surface

$$3x^2 + 5y^2 + 3z^2 + 2yz + 2zx + 2xy = 1$$

referred to the axes through the same origin and having direction numbers <-1, 0, 1>, <1, -1, 1>, <1, 2, 1>.

 2×3

II. (a) Show that the equation of the sphere through the three points (3, 0, 2), (-1, 1, 1), (2, -5, 4) and having its centre on the plane 2x + 3y + 4z = 6 is $x^2 + y^2 + z^2 + 4y - 6z = 1$.

- (b) Obtain the equation of spheres which pass through the circle $x^2 + y^2 + z^2 2x + 2y + 4z 3 = 0$, 2x + y + z = 4 and touch the plane 3x + 4y = 14.
- III. (a) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.
 - (b) Find the equation of right circular cylinder whose axis is $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z}{3}$ and passes through (0, 0, 3).
- IV. (a) Prove that the spheres $x^2 + y^2 + z^2 + 2ax + c = 0$ and $x^2 + y^2 + z^2 + 2by + c = 0$ touch iff $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c} \ (a^2, b^2 > c > 0).$
 - (b) Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 2x + 4y + 1 = 0$ and having its generators parallel to the line x = y = z. 2×3

UNIT-II

- V. (a) Find the equation of the right circular cone whose vertex is (3, 2, 1), axis the line $\frac{x-3}{4} = \frac{y-2}{1} = \frac{z-1}{3}$ and semi-vertical angle 30°.
 - (b) Find the equation of the cone passing through the co-ordinate axes and the three mutually perpendicular lines

$$\frac{x}{2} = \frac{y}{1} = \frac{z}{-1}, \frac{x}{1} = \frac{y}{3} = \frac{z}{5}, \frac{x}{8} = \frac{y}{-11} = \frac{z}{5}$$

 2×3

VI. (a) Find the equation of the cone having vertex (2, 3, 1) and passing through the curve

$$x^2 + y^2 + z^2 - 2x + 4y - 6z + 7 = 0$$
 and $x + 2y + 2z = 5$

- (b) Find the equations of the line in which the plane x 2y z = 0 cuts the cone $3x^2 + 4y^2 z^2 = 0$. Also find angle between them.
- VII. (a) Find the equation of the surface generated by the revolution of the circle $x^2 + y^2 6x + 9 r^2 = 0$; z = 0 about y-axis (r < 3).
 - (b) Identify the following surface:

$$x^2 + y^2 + z^2 + 2x - 4y - 16z - 31 = 0.$$
 2×3

VIII. Prove that surface represented by

$$26x^2 + 20y^2 + 10z^2 - 4yz - 16zx - 36xy + 52x - 36y - 16z + 25 = 0$$
 is an elliptic cylinder. Find the equation of its axis also.

1×6