(i) Printed Pages: 3 Roll No.

(ii) Questions: 8 Sub. Code: 0 1 4 6

Exam. Code: 0 0 0 2

B.A./B.Sc. (General) 2nd Semester

(2042)

MATHEMATICS

Paper—II: Calculus—II

Time Allowed: Three Hours] [Maximum Marks: 30

Note:— Attempt five questions in all, selecting at least two questions from each unit.

UNIT-I

- 1. (a) Find the intervals where the curve $y = x^4-6x^3+12x^2+5x+7$ is concave upwards or downwards. Also find points of inflexion.
 - (b) Determine the position and nature of double points on the curve :

$$x^3-y^2-7x^2+4y+15x-13=0$$
 3,3

2. (a) Find all asymptotes of the curve : $x^3-5x^2y+8xy^2-4y^3+x^2-3xy+2y^2-7=0$.

(b) Show that the asymptotes of the curve $x^3+2x^2y-xy^2-2y^3+4y^2+2xy+y-1=0$

meet the curve in three points. Also find the curve on which these points lie.

3,3

- 3. Draw the graph of the curve $y = x + \frac{1}{x}$. Find the intervals where the curve is increasing, decreasing, concave upwards, concave downwards. Also show points of inflexion. 6
- 4. (a) Find the radius of curvature at any point of the curve $x = a cos^3t$, $y = a sin^3t$.
 - (b) Find the circle of curvature at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ of the curve $\sqrt{x} + \sqrt{y} = 1$.

UNIT—II

- 5. (a) Evaluate $\int \frac{\sinh x + \cosh x}{\sinh^2 x + \cosh^2 x} dx.$
 - (b) Obtain reduction formula for $\int x \sin^n x \, dx$, hence solve $\int x \sin^3 x \, dx$.
- 6. (a) If $I_{m,n} = \int_{0}^{\pi/2} \cos^{m} x \cos n x dx$, prove that $I_{m,n} = \frac{m}{m+n} I_{m-1, n-1}$.
 - (b) Use Trapezoidal rule to approximate the integral $\int_{1}^{2} (1+x^{3})dx, n = 4. \text{ Also estimate the error.} \qquad 3,3$

7. (a) Evaluate the limit

$$\lim_{n\to\infty} \left[\frac{1}{n} + \frac{\sqrt{n}}{\sqrt{(n+4)^3}} + \frac{\sqrt{n}}{\sqrt{(n+8)^3}} + \dots + \frac{\sqrt{n}}{\sqrt{[n+4(n-1)]^3}} \right]$$

- (b) Find the area of the smaller portion enclosed by the curves $y^2 = 8x$ and $x^2+y^2 = 9$.
- 8. (a) Find the length of the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta \theta \cos \theta)$, $0 \le \theta \le \pi/2$.
 - (b) Find the surface area generated by revolving the parabola $y^2 = 4ax$ about the y-axis from x = 0 to x = 9. 3,3