(i)	Printed Pages: 3	Roll No.
(ii)	Questions : 8	Sub Code . 0 1 4 7

(ii) Questions : 8 Sub. Code : 0 1 4 7 Exam. Code : 0 0 0 2

B.A./B.Sc. (General) 2nd Semester (2042)

MATHEMATICS

Paper: III (Theory of Equations)

Time Allowed: Three Hours] [Maximum Marks: 30

- Note:—(1) Attempt FIVE questions in all by selecting at least TWO questions from each unit.
 - (2) All questions carry equal marks.

UNIT-I

- 1. (a) Show that $x^4 + 4x^3 2x^2 12x + 9 = 0$ has a multiple root and hence solve it completely.
 - (b) If α_1 , α_2 , α_n are n roots of a nth degree polynomial equation f(x) = 0, then prove

$$\frac{1}{\alpha_1 - \alpha} + \frac{1}{\alpha_2 - \alpha} + \dots + \frac{1}{\alpha_n - \alpha} = \frac{-f'(\alpha)}{f(\alpha)}, \ f(\alpha) \neq 0.$$

3,3

- 2. (a) Solve $x^4 + 4x^3 + 6x^2 + 4x + 5 = 0$ if i is its root.
 - (b) Solve $x^4 6x^3 + 11x^2 18x + 9 = 0$, if ratio of two roots of it is equal to ratio of other two roots. 3,3

1

- 3. (a) Solve $3x^3 + 10x^2 + 40x + 192 = 0$, given that all the three roots are of equal moduli.
- (b) If reciprocal of every root of x³ + x² + ax + b = 0 is also a root, then prove a = b = 1 or a = b = -1. Also find roots of it.
- 4. (a) Diminish roots of equation $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$ by h and find the condition that 2^{nd} and 3^{rd} terms are removed simultaneously. Hence solve the equation $x^3 + 6x^2 + 12x 19 = 0$.
 - (b) If α , β , γ are roots of $x^3 + px + q = 0$. Form an equation having roots $\frac{\beta^2 + \gamma^2}{\alpha^2}$, $\frac{\gamma^2 + \alpha^2}{\beta^2}$, $\frac{\alpha^2 + \beta^2}{\gamma^2}$.

UNIT-II

- 5. (a) Use Newton's method of divisors to find the integral roots of equation $3x^4 23x^3 + 35x^2 + 31x 30 = 0$.
 - (b) If $\frac{p}{q}$ is a rational root of equation:

$$a_0 x^n + a_1 x^{n-1} + a_2 x n^{-2} + \dots + a_n = 0$$
, where $a_0, a_1, \dots a_n \in \mathbb{Z}, a_n \neq 0$, $p, q \in \mathbb{Z}$, $(p, q) = 1$ then prove $p/a_n, q/a_0$.

- 6. (a) Solve $x^3 3x^2 + 12x + 16 = 0$ by Cardon's method.
 - (b) Apply Trigonometric method to prove the equation $x_3 12x + 8 = 0$ has roots $4\cos\frac{2\pi}{9}$, $4\cos\frac{4\pi}{9}$, $4\cos\frac{8\pi}{9}$.
- 7. (a) Discuss the nature of roots of the equation $x^3 + 6x^2 + 9x + 4 = 0.$
 - (b) Solve $2x^4 + 6x^3 3x^2 + 2 = 0$ by expressing it as product of two quadratic factors. 3,3
- 8. (a) Explain Ferrari's method to solve a biquadratic equation $a_0x^4 + 4a_1x^3 + 6a_2x^2 + 4a_3x + a_4 = 0$.
 - (b) Solve by Ferrari's method the equation

$$x^4 - 10x^3 + 35x^2 - 50x + 24 = 0.$$
 3,3