(i)	Printed Pages: 3	Roll No.	••••
(ii)	Questions : 7	~ -	9
		Exam. Code : 0 0 0	2
	B.A./B.Sc. (General) 2 nd Semester (2042)	
		PHYSICS	
	Paper : B Vibratio	ns, Waves & E.M. Theory-II	
Time	Allowed: Three Ho	ours] [Maximum Marks : 4	14
Note	:—(1) Attempt five two questions	e questions in all, selecting at least each from Unit-I and Unit-II. Question III) is compulsory.	st
inaes 1940a		rogrammable calculator is allowed. UNIT-I	
1. (a	incident wave leav	rgy arriving at the boundary in the es the boundary in the reflected and also define reflection and transmission	1

coefficients of energy. 6

(b) A wave of frequency 400 Hz is travelling with a velocity of 800 m/s along x-axis. How far two points are situated whose displacements differ in phase by $\pi/4$?

What is progressive wave? Derive the wave equation 2. for transverse waves in a string. 6

Differentiate between wave velocity and group velocity.

3

- 3. (a) Prove that in a progressive wave, half the energy of a wave is kinetic and other half is potential.
 - (b) What is the condition for impedance matching when the impedance of the two media are not equal?

UNIT-II

- 4. (a) What is Poynting vector? What does it represent? State and prove Poynting Theorem.
 - (b) Calculate the Poynting vector at the surface of the Sun. Given that it radiates 3.8 × 10²⁶ joule of energy per second and that of radius of Sun is 0.7 × 10⁹ m. 3
- (a) Discuss the propagation of plane em wave incident normally at the boundary separating two media of different impedances and show that a perfect conductor is a perfect reflector of em waves.
 - (b) Why a light wave is characterised only by its electric field vector, although it has the magnetic field vector? Justify.
- (a) Derive an expression for impedance of a conducting medium to em wave and hence show that the phase difference between electric and magnetic field of em waves in a conductor is π/4.
 - (b) Find the skin depth for a frequency of 10^6 Hz if $\sigma = 5.8 \times 10^7$ Sm⁻¹, $\mu = 4\pi \times 10^{-7}$ Hm⁻¹.

UNIT-III

7. Attempt any eight parts:

- (a) What is the velocity of em waves in free space and in medium?
- (b) What is skin depth? What is its value for a perfect conductor?
- (c) Calculate the pointing vector for a distance of 7 m from a 200 W lamp.
- (d) The magnetic and electric fields are closely related to each other. Comment.
- (e) Give two applications of impedance matching.
- (f) Two electric cables are joined at a point. What special care should be taken for proper transmission of power?
- (g) What are transverse waves?
- (h) Give the examples of normal and anomalous dispersive medium.
- (i) Explain why there is a flick at the free end of a whip of a string.
- (j) Why light waves travel through vacuum whereas sound waves cannot?

 1×8=8