(i)	Printed Pag	ges: 3	Roll No.					
(ii)	Questions	: 7	Sub. (Code:	0	1	5	0
			Exam. (Code:	0	0	0	2

B.A./B.Sc. (General) 2nd Semester (2042)

PHYSICS

(Electricity and Magnetism-II)

Paper-C

Time Allowed: Three Hours]

[Maximum Marks: 44

- Note:—(1) Attempt five questions in all, by selecting two questions each from Unit-I and Unit-II.
 - (2) Unit-III is compulsory.
 - (3) Use of non-programmable calculator is allowed.

UNIT-I

1. (a) Show that the transformation laws of transforming electric field from one inertial frame of reference to another are given by $E'_x = E_x$, $E'_y = rE_y$, $E'_z = rE_z$ where

$$r = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}.$$

(b) There is a proton lying in a frame of reference which is moving with a velocity of 0.8C along the x direction in space in which an electric field \(\vec{E} = 4\hat{i} + 3\hat{j}\) vm⁻¹ is acting. Calculate the parallel and perpendicular components of the force acting on proton.

2.	(a)	Prove that magnetic moment due to orbital motion of an					
		electron must be integral multiple of $\frac{eh}{4\pi m}$ S.I. units.					

6

- (b) Derive the relation $\mu = \mu_0(1 + X_m)$ where the symbols have usual meaning.
- 3. (a) Derive and discuss the equation of continuity $\vec{\nabla} \cdot \vec{J} + \frac{\partial p}{\partial t} = 0.$
 - (b) Define free and bound currents. Show that $\vec{H} = \vec{J}$ free.

UNIT-II

- 4. (a) State and prove Ampere's circuital law. Use this law to find magnetic field due to long solenoid.
 - (b) Calculate the current in a circular coil of radius 10 cm and 100 turns to produce a magnetic field of 0.1 mT at its centre.
- 5. (a) State and prove reciprocity theorem of mutual induction.

(b) Calculate mutual inductance between two coils, when a current of 4A changes to 8A in 0.5s and induces an emf of 50 mV in the secondary.

- 6. (a) Define vector potential and derive an expression for it.

 Show that divergene of vector potential is zero.
 - (b) Show that energy density in magnetic field B set up in a

solenoid is
$$\frac{B^2}{2\mu_0}$$
.

3

7

UNIT-III

Attempt any eight of the following:

- 7. (a) What is the difference between conservation and invariance of charge?
 - (b) Write down the equation which shows that magnetic monopole do not exist.
 - (c) Define drift velocity. How it varies with:
 - (i) Current flowing though the conductor
 - (ii) Relaxation time?
 - (d) What are paramagnetic substances? Give examples.
 - (e) What is Hall effect?
 - (f) What is the significance of non-diverging \vec{j} ?
 - (g) What is the value of $\vec{\nabla} \cdot \vec{B}$ and $\vec{\nabla} \times \vec{B}$ for points inside the current loop?
 - (h) What is Gauss law in magnetism?
 - (i) Explain why the coils of the resistance box are wound over themselves.
 - (j) Why inductance is called electrical inertia? $1\times8=8$