(i)	Printed Pages: 3	R	Roll No	••••••	••••••	•••••
(ii)	Questions : 7	Sub. (Code:	0 3	4	9
97,000		Exam. (-	4
Leve, 20	B.A./B.Sc.	(General) 4th (2042)	h Semeste	r (80%)		
		PHYSICS				1
	(Qua	antum Physics	-II)			
T are		Paper-C				
	llowed : Three Ho		[Maxin	num Ma	rks:	44
Note :-		nit I and Unit	II. Unit III	is com	pulsor	y.
	(2) Use of non-	programmable	calculato	r is alle	owed.	
		UNIT-I				
1. (a)	Derive a relation average life time	between tra	nsition p	robabili tate.	ity an	
(b)	70. 在400 年 1955 D. B.		THE RESERVE OF THE PARTY OF		for al	1
2. (a)	What is anomalous for splitting of leve	Zeeman effec	t? Derive	an expr	ession	
			naious Zei	cinan ei		
(h)	Dia dal				6	
(b)	Find the possible or	ientation of J	for $j = 3/2$	2 with re	espect	
	to a magnetic field	along Z-axis.		Park I	3	
349/PQ-1	4858			. Tree		

- (a) Derive an expression for total magnetic moment of an electron in an atom due to the interaction of its orbital and spin angular momenta.
 - (b) What magnetic flux density B is required to observe the normal Zeeman effect if a spectrometer can resolve spectral lines separated by 0.2Å at 2000Å.

UNIT-II

- (a) Discuss and draw the spectra of alkali atoms qualitatively.
 Give the various selection rules used.
 - (b) Consider an atom with an electronic configuration 1s²2s²2p¹. Find the magnitude of total angular momentum.
- 5. (a) Discuss the construction and working of Coolidge tube. How can you control (i) quality and (i) quantity of X-rays in Coolidge tube?
 - (b) Calculate the frequency of K_{α} line when atomic number of the anticathode is 79. Given $R = 1.097 \times 10^7 \text{m}^{-1}$.
- (a) Discuss the vibrational-rotational spectra of diatomic molecules and also write its selection rules.
 - (b) Explain experimental set up and theory of magnetic resonance experiments.

UNIT-III

- 7. Attempt any eight parts:
 - (a) Which orbit corresponds to maximum energy state in Bohr model of atom?
 - (b) Write the possible values of total magnetic quantum number mj for 1 = 2.
 - (c) How many electrons would be there if all electronic shells through n = 5 is completely occupied?
 - (d) What do you mean by parahelium and orthohelium?
 - (e) Auger effect is an internal photoelectric effect. Comment.
 - (f) Can the Stern-Garlach experiment be performed with ions rather than neutral atoms?
 - (g) In rotational spectra, energy levels and frequency are equally spaced or not?
 - (h) Explain if high speed electrons are made to fall on hydrogen atom, will X-rays be emitted?
 - (i) What is Stark effect?
 - (j) Why do molecules show band rather than line spectra?

 1×8=8